
Simulink® Real-Time™

API Guide

R2017a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ API Guide
© COPYRIGHT 2002–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History

July 2002 Online only New for Version 2 (Release 13)
October 2002 Online only Updated for Version 2 (Release 13)
September 2003 Online only Revised for Version 2.0.1 (Release 13SP1)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)
March 2009 Online only Revised for Version 4.1 (Release 2009a)
September 2009 Online only Revised for Version 4.2 (Release 2009b)
March 2010 Online only Revised for Version 4.3 (Release 2010a)
September 2010 Online only Revised for Version 4.4 (Release 2010b)
April 2011 Online only Revised for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)
October 2014 Online only Revised for Version 6.1 (Release 2014b)
March 2015 Online only Revised for Version 6.2 (Release 2015a)
September 2015 Online only Revised for Version 6.3 (Release 2015b)
March 2016 Online only Revised for Version 6.4 (Release 2016a)
September 2016 Online only Revised for Version 6.5 (Release 2016b)
March 2017 Online only Revised for Version 6.6 (Release 2017a)





Contents

Introduction
1

Simulink Real-Time API for Microsoft .NET Framework . . . 1-2
xPCTargetPC Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
xPCApplication Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
xPCFileSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Simulink Real-Time C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

C API Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

Simulink Real-Time API for Microsoft .NET
Framework

2
Using the Simulink Real-Time API for Microsoft .NET

Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Simulink Real-Time .NET API Application Creation . . . . . . 2-4
Visual Studio Coding Environment . . . . . . . . . . . . . . . . . . . . 2-4
Visual Studio Design Environment . . . . . . . . . . . . . . . . . . . . 2-5

Simulink Real-Time .NET API Application Distribution . . . 2-6

Simulink Real-Time .NET API Client Application
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

v



Simulink Real-Time API Reference for
Microsoft .NET Framework

3

Simulink Real-Time API for C
4

Using the C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Simulink Real-Time API Reference for C
5

MATLAB API
6

vi Contents



1

Introduction

• “Simulink Real-Time API for Microsoft .NET Framework” on page 1-2
• “Simulink Real-Time C API” on page 1-7
• “C API Error Messages” on page 1-8



1 Introduction

Simulink Real-Time API for Microsoft .NET Framework

The Simulink Real-Time API for Microsoft .NET Framework consists of objects arranged
in hierarchical order. Each of these objects has functions and properties that allow you to
manipulate and interact with the API. The API provides various object types, including
objects for the target computer, real-time applications, scopes, and the file system. You
can use these API functions from languages and custom programs that support managed
code, such as Microsoft Visual Studio®, Windows® PowerShell™, and MATLAB®.

The Microsoft Windows API supplies the infrastructure for using threads. The Simulink
Real-Time API for Microsoft .NET Framework builds on top of that infrastructure to
provide a programming model that includes asynchronous support. You do not need prior
knowledge of threads programming to use this API.

The Simulink Real-Time .NET object model closely models the Simulink Real-Time
system, as shown in this conceptual diagram.

1-2



 Simulink Real-Time API for Microsoft .NET Framework

The API object hierarchy derived from the Simulink Real-Time system is shown in this
conceptual diagram.

1-3



1 Introduction

The key object types are xPCTargetPC, xPCApplication, and xPCFileSystem.

xPCTargetPC Class

The xPCTargetPC Class object represents the overall Simulink Real-Time system.

The xPCTargetPC object is at the root level of the object model. After you connect
the .NET application running on the development computer to the real-time application

1-4



 Simulink Real-Time API for Microsoft .NET Framework

running on the target computer, the object exposes session information. xPCTargetPC
provides member functions that you use to access information and to manipulate the
real-time application and the target computer file system.

An xPCTargetPC object contains two main object types, xPCApplication and
xPCFileSystem.

xPCApplication Class

The xPCApplication Class object represents the real-time application that you
generate from a Simulink model and download to the target computer.

With the xPCApplication object, you can access real-time application information,
change application behavior, and access scope, signal, parameter, and data logging
objects:

• xPCScopes Class — Represents a container or placeholder for Simulink Real-Time
target, host, and file scopes.

• xPCSignals Class — Represents a container or placeholder for real-time
application signals. With this object, you can access one or more xPCSignal objects.

• xPCSignal Class — Represents a specific signal, which represents the port signal
of a nongraphical block output. With this object, you can access signal-related
information and monitor signal behavior during simulation.

• xPCParameters Class — Represents a container or placeholder for real-time
application parameters. With this object, you can access one or more xPCParameter
objects.

• xPCParameter Class — Represents a specific parameter or a run-time parameter
of a specific block. With this object, you can access block parameter information and
tune parameter values during simulation.

• xPCAppLogger Class — Represents a placeholder for specific logging objects.

xPCFileSystem

An xPCFileSystem Class object represents the entire Simulink Real-Time file system.

An xPCFileSystem object contains objects like the following:

• xPCDriveInfo Class — Represents a volume drive that the target computer
recognizes.

1-5



1 Introduction

• xPCDirectoryInfo Class — Represents a target computer folder item.
• xPCFileInfo Class — Represents a target computer file item.

1-6



 Simulink Real-Time C API

Simulink Real-Time C API

The Simulink Real-Time C API consists of a series of C functions that you can call from a
C or C++ custom program. This API is designed for multi-threaded operation on a 64-bit
target computer.

The Simulink Real-Time C API DLL consists of C functions that you can incorporate into
a custom program. You can use an application written through either interface to load,
run, and monitor a real-time application without interacting with MATLAB. Using the
Simulink Real-Time C API, you write the custom program in a high-level language (such
as C, C++, or Java®) that works with a real-time application. This option requires that
you are an experienced programmer.

The xpcapi.dll file contains the Simulink Real-Time C API dynamic link library,
which contains over 90 functions you can use to access the real-time application. Because
xpcapi.dll is a dynamic link library, your program can use run-time linking rather
than static linking at compile time. Use the Simulink Real-Time C API to build custom
programs for development environments such as Microsoft Foundation Class Library/
Active Template Library (MFC/ATL) and third-party product APIs such as Altia®).

All custom Simulink Real-Time C API programs must link with the xpcapi.dll file
(Simulink Real-Time C API DLL). Also associated with the dynamic link library is the
xpcinitfree.c file. This file contains functions that load and unload the Simulink
Real-Time C API. Build this file along with the custom Simulink Real-Time C API
program.

The Simulink Real-Time C API consists of blocking functions. A default timeout
of 5 seconds controls how long a target computer can take to communicate with a
development computer.

The documentation reflects the fact that the API is written in the C programming
language. However, you can call the API functions from non-C languages, such as C++
and Java.

Note: Refer to the compiler documentation of the non-C language for a description of how
to access C functions from a library DLL. To access the Simulink Real-Time C API DLL,
follow these directions.

1-7



1 Introduction

C API Error Messages
The header file matlabroot\toolbox\rtw\targets\xpc\api\xpcapiconst.h
defines these error messages.

Message Description

ECOMPORTACCFAIL COM port access failed

ECOMPORTISOPEN COM port is already opened

ECOMPORTREAD ReadFile failed while reading from COM port

ECOMPORTWRITE WriteFile failed while writing to COM port

ECOMTIMEOUT timeout while receiving: check serial

communication

EFILEOPEN Error opening file

EFILEREAD Error reading file

EFILERENAME Error renaming file

EFILEWRITE Error writing file

EINTERNAL Internal Error

EINVADDR Invalid IP Address

EINVARGUMENT Invalid Argument

EINVALIDMODEL Model name does not match saved value

EINVBAUDRATE Invalid value for baudrate

EINVCOMMTYP Invalid communication type

EINVCOMPORT COM port can only be 0 or 1 (COM1 or COM2)

EINVDECIMATION Decimation must be positive

EINVFILENAME Invalid file name

EINVINSTANDALONE
Command not valid for StandAlone

EINVLGDATA Invalid lgdata structure

EINVLGINCR Invalid increment for value equidistant logging

EINVLGMODE Invalid Logging mode

EINVLOGID Invalid log identifier

EINVNUMPARAMS Invalid number of parameters

1-8



 C API Error Messages

Message Description

EINVNUMSIGNALS Invalid number of signals

EINVPARIDX Invalid parameter index

EINVPORT Invalid Port Number

EINVSCIDX Invalid Scope Index

EINVSCTYPE Invalid Scope type

EINVSIGIDX Invalid Signal index

EINVTRIGMODE Invalid trigger mode

EINVTRIGSLOPE Invalid Trigger Slope Value

EINVTRSCIDX Invalid Trigger Scope index

EINVNUMSAMP Number of samples must be nonnegative

EINVSTARTVAL Invalid value for "start"

EINVTFIN Invalid value for TFinal

EINVTS Invalid value for Ts (must be between 8e-6 and

10)

EINVWSVER Invalid Winsock version (1.1 needed)

EINVXPCVERSION Target has an invalid version of Simulink Real-

Time

ELOADAPPFIRST Load the application first

ELOGGINGDISABLED Logging is disabled

EMALFORMED Malformed message

EMEMALLOC Memory allocation error

ENODATALOGGED No data has been logged

ENOERR No error

ENOFREEPORT No free Port in C API

ENOMORECHANNELS No more channels in scope

ENOSPACE Space not allocated

EOUTPUTLOGDISABLED Output Logging is disabled

EPARNOTFOUND Parameter not found

EPARSIZMISMATCH Parameter Size mismatch

1-9



1 Introduction

Message Description

EPINGCONNECT Could not connect to Ping socket

EPINGPORTOPEN Error opening Ping port

EPINGSOCKET Ping socket error

EPORTCLOSED Port is not open

ERUNSIMFIRST Run simulation first

ESCFINVALIDFNAME Invalid filename tag used for dynamic file name

ESCFISNOTAUTO Autorestart must be enabled for dynamic file

names

ESCFNUMISNOTMULT MaxWriteFileSize must be a multiple of the

writesize

ESCTYPENOTTGT Scope Type is not "Target"

ESIGLABELNOTFOUND Signal label not found

ESIGLABELNOTUNIQUE Ambiguous signal label (signal labels are not

unique)

ESIGNOTFOUND Signal not found

ESOCKOPEN Socket Open Error

ESTARTSIMFIRST Start simulation first

ESTATELOGDISABLED State Logging is disabled

ESTOPSCFIRST Stop scope first

ESTOPSIMFIRST Stop simulation first

ETCPCONNECT TCP/IP Connect Error

ETCPREAD TCP/IP Read Error

ETCPTIMEOUT TCP/IP timeout while receiving data

ETCPWRITE TCP/IP Write error

ETETLOGDISABLED TET Logging is disabled

ETGTMEMALLOC Target memory allocation failed

ETIMELOGDISABLED Time Logging is disabled

ETOOMANYSAMPLES Too Many Samples requested

ETOOMANYSCOPES Too many scopes are present

1-10



 C API Error Messages

Message Description

ETOOMANYSIGNALS Too many signals in Scope

EUNLOADAPPFIRST Unload the application first

EUSEDYNSCOPE Use DYNAMIC_SCOPE flag at compile time

EWRITEFILE LoadDLM: WriteFile Error

EWSINIT WINSOCK: Initialization Error

EWSNOTREADY Winsock not ready

1-11





2

Simulink Real-Time API for
Microsoft .NET Framework



2 Simulink Real-Time API for Microsoft .NET Framework

Using the Simulink Real-Time API for Microsoft .NET Framework

The Simulink Real-Time API for Microsoft .NET Framework is a fully managed and
usable .NET framework component. It contains components and types that enable you to
design custom applications quickly. Although it is designed to work with Microsoft Visual
Studio, you can use it with other development environments and programming languages
that support the .NET framework.

The Simulink Real-Time .NET API includes the following features.

• Microsoft Visual Studio design time.
• Intuitive object model (modeled after the Simulink Real-Time system environment).
• Simplified client model programming for asynchronous communication with the

target computer.

The Simulink Real-Time API for .NET framework provides multiple ways for you to
interface client-side custom applications with target computers, including outside the
MATLAB environment. For example:

• Visual instrumentation for your real-time application.
• Custom applications to perform data observation, collection, and archiving.
• Real-time application debugging from a remote client computer.
• Calibration, test, and evaluation of real-time processes.
• Real-time data analysis.
• Batch processing and automation scripts, which can run in a shell (such as

PowerShell) or as a process console standalone application (.exe file).

The Simulink Real-Time API for .NET framework supports a run-time user-driven
mode of execution and an optional developer-driven mode of execution, or design-time
capability. You can integrate the design-time capability with the Microsoft Visual Studio
IDE. The following operations are available:

• Drag UI elements into the form design
• Configure properties using a design-time properties window
• Delete UI elements from the form design

The Simulink Real-Time API for .NET Framework does not support applications that use
the .NET client profile. It only supports applications that use the full .NET Framework.

2-2



 Using the Simulink Real-Time API for Microsoft .NET Framework

For more information on using Microsoft Visual Studio .NET, see
msdn.microsoft.com/en-us/library/aa973739(v=vs.71).aspx.

For some examples of custom .NET applications, see “Simulink Real-Time .NET API
Client Application Examples” on page 2-7.

2-3

http://msdn.microsoft.com/en-us/library/aa973739(v=vs.71).aspx


2 Simulink Real-Time API for Microsoft .NET Framework

Simulink Real-Time .NET API Application Creation

Before creating your Microsoft .NET Framework custom client application, set up the
development environment. In addition to installing the products listed in the system
requirements at www.mathworks.com/products/xpctarget/requirements.html,
do the following setup.

Visual Studio Coding Environment

• To build a custom application that calls the Simulink Real-Time API for the .NET
Framework, use a third-party development environment that can interact with .NET,
such as Microsoft Visual Studio.

• To build an application (.exe or DLL) that calls functions from the Simulink Real-
Time API libraries, use a third-party compiler that generates code for Win64
computers. You can write client applications that call these functions in another high-
level language, such as C#, C++, or C.

• Create a Windows application.
• To run the application on a 64-bit computer, copy xpcapi.dll file from

matlabroot\toolbox\rtw\targets\xpc\api\x64 to the folder where you build
the executable application.

• Add a reference for xPCFramework.dll to your project by including the following in
your code.

using MathWorks.xPCTarget.FrameWork;

You can then access the types available from the Simulink Real-Time environment,
for example, when creating a console or graphic display application.

• Compile your Microsoft .NET Framework client application as a 64-bit application.

You can connect a target computer to only one development computer at a time. Before
starting your .NET application, be sure to disconnect the target computer from the
development computer (xPCTargetPC.disconnect). You can use slrtpingtarget
from the Command Window to check whether the development and target computers
are connected. When execution is finished, this function disconnects from the target
computer.

If your development computer has additional network resources, you can connect
additional target computers to the same development computer.

2-4

https://www.mathworks.com/products/xpctarget/requirements.html


 Simulink Real-Time .NET API Application Creation

When your .NET application starts, first connect the development computer to the target
computer (xPCTargetPC.connect), and then test the link between the development and
target computers (xPCTargetPC.ping).

Visual Studio Design Environment

Optionally, you can use the design-time capability of the Microsoft Visual Studio
environment with the xPCTargetPC nonvisual component. To make these capabilities
available, carry out the following steps.

1 Add xPCFramework.dll to the Visual Studio Toolbox.
2 Add an xPCTargetPC object to the application form by dragging an xPCTargetPC

control from the Toolbox window to the design surface.
3 To explore and customize the xPCTargetPC properties, click the xPCTargetPC

control in the design surface.

The Visual Studio Properties window opens. In the Properties window, the
xPCTargetPC control makes available its data and appearance properties.

2-5



2 Simulink Real-Time API for Microsoft .NET Framework

Simulink Real-Time .NET API Application Distribution

To distribute your Microsoft .NET Framework client application, such as a user interface:

• You must have a Simulink Real-Time license to distribute your client application.
• When you build your application, the Visual Studio software builds the files for your

executable, including a *.exe file. When you distribute your application, include
these files in the same folder.

• Keep in mind that the client application depends on xPCFramework.dll, which
depends on xpcapi.dll.

2-6



 Simulink Real-Time .NET API Client Application Examples

Simulink Real-Time .NET API Client Application Examples

Simulink Real-Time includes examples showing how to create .NET client applications
that run on the development computer and interface with a model downloaded on the
target computer.

The example “Simple Client Application With the .NET API” shows two client
applications, Example 1 and Example 2.

• Example 1 — Provides a UI with buttons, text boxes, and a track bar through which
you can enter the IP address port of the target computer.

• Example 2 — Provides a UI similar to that in Example 1, with also a chart that
displays signals from the xpcosc real-time application.

Another example, FileSystemBrowse, provides a file browser that runs on the
development computer and connects to the target computer to browse its file system.

FileSystemBrowse is located in:
matlabroot\toolbox\rtw\targets\xpc\api\xPCFrameworkSamples\FileSystemBrowse

FileSystemBrowse is a C# project developed with the Microsoft Visual Studio 2008
IDE. See the Readme.txt file in the example folder for instructions on how to access and
build the example code.

2-7





3

Simulink Real-Time API Reference for
Microsoft .NET Framework



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileScopeCollection.Add
Create xPCFileScope object with next available scope ID as key

Syntax

public xPCFileScope Add()

public xPCFileScope Add(int ID)

public IList<xPCFileScope> Add(int[] arrayOfIDs)

IList

Description

Class: xPCFileScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileScope Add() creates xPCFileScope object with the next available
scope ID as key. It then adds xPCFileScope object to xPCFileScopeCollection object.

public xPCFileScope Add(int ID) creates xPCFileScope object with ID as key. ID
is 32-bit integer that specifies an ID for the scope object.

public IList<xPCFileScope> Add(int[] arrayOfIDs) creates an IList of
xPCFileScope objects with an array of IDs as keys. arrayOfIDs is an array of 32-bit
integers that specifies an array of IDs for scope objects.

Introduced in R2011b

3-2



 xPCFileScopeSignalCollection.Add

xPCFileScopeSignalCollection.Add
Add signals to file scope

Syntax

public xPCFileScopeSignal Add(xPCSignal signal)

public xPCFileScopeSignal Add(string blkPath)

public xPCFileScopeSignal Add(int sigId)

public IList<xPCFileScopeSignal> Add(int[] sigIds)

Description

Class: xPCFileScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileScopeSignal Add(xPCSignal signal) adds signals to the file
scope. It creates an xPCFileScopeSignal object with signal. signal is the xPCSignal
object that represents the actual signal. This method returns a file scope signal object of
type xPCFileScopeSignal.

public xPCFileScopeSignal Add(string blkPath) adds signal to the file scope.
It creates an xPCFileScopeSignal object that blkPath specifies. blkPath is a character
string that specifies the signal name (block path). This method returns a file scope signal
object of type xPCFileScopeSignal.

public xPCFileScopeSignal Add(int sigId) adds signals to the file scope. It
creates an xPCFileScopeSignal object specified with sigId. sigId is a 32-bit integer
that represents the actual signal. This method returns a file scope signal object of type
xPCFileScopeSignal.

public IList<xPCFileScopeSignal> Add(int[] sigIds) adds signals to the file
scope. It creates an IList of xPCFileScopeSignal objects, one for each signal in the array

3-3



3 Simulink Real-Time API Reference for Microsoft .NET Framework

of IDs. sigIds is an array of 32-bit integers that specifies an array of IDs that represent
the actual signals. This method returns an IList of xPCFileScopeSignal objects.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-4



 xPCHostScopeCollection.Add

xPCHostScopeCollection.Add
Create xPCHostScope object with next available scope ID as key

Syntax

public xPCHostScope Add()

public xPCHostScope Add(int ID)

public IList<xPCHostScope> Add(int[] arrayOfIDs)

Description

Class: xPCHostScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCHostScope Add() creates xPCHostScope object with the next available
scope ID as key. It then adds an xPCHostScope object to xPCHostScopeCollection object.
This method returns an xPCHostScopeObject object.

public xPCHostScope Add(int ID) creates xPCHostScope object with ID as key.
ID is 32-bit integer that specifies an ID for the scope object. This method returns an
xPCHostScopeObject object.

public IList<xPCHostScope> Add(int[] arrayOfIDs) creates an ILIST of
xPCHostScope objects with an array of IDs as keys. arrayOfIDs is an array of 32-bit
integers that specifies an array of IDs for scope objects.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

3-5



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Introduced in R2011b

3-6



 xPCHostScopeSignalCollection.Add

xPCHostScopeSignalCollection.Add
Add signals to host scope

Syntax

public xPCHostScopeSignal Add(xPCSignal signal)

public xPCHostScopeSignal Add(string blkpath)

public xPCHostScopeSignal Add(int sigId)

public IList<xPCHostScopeSignal> Add(int[] sigIds)

Description

Class: xPCHostScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCHostScopeSignal Add(xPCSignal signal) adds signals to the host
scope. It creates xPCHostScopeSignal object with signal. signal is the xPCSignal
object that represents the actual signal. This method returns an xPCHostScopeSignal
object.

public xPCHostScopeSignal Add(string blkpath) adds signal to the host scope.
It creates an xPCHostScopeSignal object that blkPath specifies. blkPath is a character
string that specifies the signal name (block path). This method returns a host scope
signal object of type xPCHostScopeSignal.

public xPCHostScopeSignal Add(int sigId) adds signals to the host scope. It
creates an xPCHostScopeSignal object specified with sigId. sigId is a 32-bit integer
that represents the actual signal. This method returns a host scope signal object of type
xPCHostScopeSignal.

public IList<xPCHostScopeSignal> Add(int[] sigIds) adds signals to the host
scope. It creates an ILIST of xPCHostScopeSignal objects, one for each signal in the array

3-7



3 Simulink Real-Time API Reference for Microsoft .NET Framework

of IDs. sigIds is an array of 32-bit integers that specifies an array of IDs that represent
the actual signals. This method returns an ILIST of xPCHostScopeSignal objects.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-8



 xPCTargetScopeCollection.Add

xPCTargetScopeCollection.Add
Create xPCTargetScope object

Syntax

public xPCTargetScope Add()

public xPCTargetScope Add(int ID)

public IList<xPCTargetScope> Add(int[] arrayOfIDs)

Description

Class: xPCTargetScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCTargetScope Add() creates xPCTargetScope object with
the next available scope ID as key. It then adds xPCTargetScope object to
xPCTargetScopeCollection object. This method returns an xPCTargetScope object.

public xPCTargetScope Add(int ID) creates xPCTargetScope object with ID as
key. ID is 32-bit integer that specifies an ID for the scope object. This method returns an
xPCTargetScope object.

public IList<xPCTargetScope> Add(int[] arrayOfIDs) creates an ILIST of
xPCTargetScope objects with an array of IDs as keys. arrayOfIDs is an array of 32-bit
integers that specifies an array of IDs for scope objects. This method returns an IList of
xPCTargetScope objects.

Introduced in R2011b

3-9



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetScopeSignalCollection.Add
Create xPCTargetScopeSignal object

Syntax

public xPCTgtScopeSignal Add(xPCSignal signal)

public xPCTgtScopeSignal Add(string blkPath)

public xPCTgtScopeSignal Add(int sigId)

public IList<xPCTgtScopeSignal> Add(int[] sigIds)

Description

Class: xPCTargetScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCTgtScopeSignal Add(xPCSignal signal) creates
xPCTargetScopeSignal object with signal. It then adds xPCTargetScopeSignal object
to xPCTargetScopeSignalCollection object. signal is of type xPCSignal. This method
returns an xPCTargetScopeSignal object.

public xPCTgtScopeSignal Add(string blkPath) adds signal to the target
scope. It creates an xPCTargetScopeSignal object that blkPath specifies. blkPath is a
character string that specifies the signal name (block path). This method returns a target
scope signal object of type xPCTgtScopeSignal.

public xPCTgtScopeSignal Add(int sigId) creates xPCTargetScopeSignal
object with sigId. It then adds xPCTargetScopeSignal object to
xPCTargetScopeSignalCollection object. sigId is a 32-bit integer. This method returns
an xPCTargetScopeSignal object.

public IList<xPCTgtScopeSignal> Add(int[] sigIds) creates an ILIST of
xPCTargetScopeSignal objects with an array of IDs. sigIds is an array of 32-bit integers
that specifies an array of IDs for file scope signal objects.

3-10



 xPCTargetScopeSignalCollection.Add

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-11



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileStream.Close
Close current stream

Syntax

public void Close()

Description

Class: xPCFileStream Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Close() close the current stream and releases the resources (such as file
handles) associated with it.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-12



 xPCTargetPC.Connect

xPCTargetPC.Connect
Establish connection with target computer

Syntax

public void Connect()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Connect() establishes a connection to a remote target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-13



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.ConnectAsync
Asynchronous request for target computer connection

Syntax

public void ConnectAsync()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void ConnectAsync() begins an asynchronous request for a target computer
connection.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method

Introduced in R2011b

3-14



 xPCTargetPC.ConnectCompleted

xPCTargetPC.ConnectCompleted
Event when xPCTargetPC.ConnectAsync is complete

Syntax

public event ConnectCompleted ConnectCompleted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event ConnectCompleted ConnectCompleted occurs when an
asynchronous connect operation is complete.

Introduced in R2011b

3-15



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.Connected
Event after xPCTargetPC.Connect is complete

Syntax

public event EventHandler Connected

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Connected occurs after a connect operation is
complete.

Introduced in R2011b

3-16



 xPCTargetPC.Connecting

xPCTargetPC.Connecting
Event before xPCTargetPC.Connect starts

Syntax

public event EventHandler Connecting

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Connecting occurs before connect operation starts.

Introduced in R2011b

3-17



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileInfo.CopyToHost
Copy file from target computer file system to development computer file system

Syntax
public FileInfo CopyToHost(string DevelDestFileName)

Description
Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public FileInfo CopyToHost(string DevelDestFileName) copies file,
DevelDestFileName, from target computer file system to new location on development
computer file system. DevelDestFileName is a character string that specifies the full
path name for the file.

Exception

Exception Condition

ArgumentException DevelDestFileName is empty, contains only white
spaces, or contains invalid characters.

ArgumentNullException DevelDestFileName is NULL reference.
NotSupportedException DevelDestFileName contains a colon (:) in the middle of

the character string.
PathTooLongException The specified path, file name, or both in

DevelDestFileName exceed the system-defined
maximum length. For example, on Windows platforms,
path names must be fewer than 248 characters. File
names must be fewer than 260 characters.

3-18



 xPCFileInfo.CopyToHost

Exception Condition

SecurityException Caller does not have required permission.
UnauthorizedAccess-

Exception

System does not allow access to DevelDestFileName.

xPCException When problem occurs, query xPCException object
Reason property.

Introduced in R2011b

3-19



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileInfo.Create
Create file in specified path

Syntax

public xPCFileStream Create()

Description

Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileStream Create() create file in specified path.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-20



 xPCFileSystem.CreateDirectory

xPCFileSystem.CreateDirectory
Create folder

Syntax

public xPCDirectoryInfo CreateDirectory(string path)

Description

Class: xPCFileSystem Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCDirectoryInfo CreateDirectory(string path) creates folder on the
target computer file system. path is a character string that specifies the full path name
for the new folder. This method returns an xPCDirectoryInfo object.

A fully qualified folder name can have a maximum of 248 characters, including the drive
letter, colon, and backslash.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2016a

3-21



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDirectoryInfo.Create
Create folder

Syntax

public void Create()

Description

Class: xPCDirectoryInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Create() creates a folder.

Introduced in R2011b

3-22



 xPCFileSystemInfo.Delete

xPCFileSystemInfo.Delete
Delete current file or folder

Syntax

public abstract void Delete()

Description

Class: xPCFileSystemInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public abstract void Delete() deletes the current file or folder on the target
computer file system.

Introduced in R2011b

3-23



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDirectoryInfo.Delete
Delete empty xPCDirectoryInfo object

Syntax

public override void Delete()

Description

Class: xPCDirectoryInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Delete() deletes an empty xPCDirectoryInfo object.

Introduced in R2011b

3-24



 xPCFileInfo.Delete

xPCFileInfo.Delete
Permanently delete file on target computer

Syntax

public override void Delete()

Description

Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Delete() permanently deletes files from the target
computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-25



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.Disconnect
Disconnect from target computer

Syntax

public void Disconnect()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Disconnect() closes the connection to the target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-26



 xPCTargetPC.DisconnectAsync

xPCTargetPC.DisconnectAsync
Asynchronous request to disconnect from target computer

Syntax

public void DisconnectAsync()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void DisconnectAsync() begins an asynchronous request to disconnect from
the target computer.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method

Introduced in R2011b

3-27



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.DisconnectCompleted
Event when xPCTargetPC.DisconnectAsync is complete

Syntax

public event DisconnectCompletedEventHandler DisconnectCompleted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event DisconnectCompletedEventHandler DisconnectCompleted

occurs when an asynchronous disconnect operation is complete.

Introduced in R2011b

3-28



 xPCTargetPC.Disconnected

xPCTargetPC.Disconnected
Event after xPCTargetPC.Disconnect is complete

Syntax

public event EventHandler Disconnected

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Disconnected occurs after a disconnect operation is
complete.

Introduced in R2011b

3-29



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.Disconnecting
Event before xPCTargetPC.Disconnect starts

Syntax

public event EventHandler Disconnecting

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Disconnecting occurs before a disconnect operation
starts.

Introduced in R2011b

3-30



 xPCTargetPC.Dispose

xPCTargetPC.Dispose
Clean up used resources

Syntax

public void Dispose()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Dispose() cleans up used resources.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-31



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.Disposed
Event after xPCTargetPC.Dispose is complete

Syntax

public event EventHandler Disposed

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Disposed occurs after the disposal of used resources is
complete.

Introduced in R2011b

3-32



 xPCFileSystem.GetCurrentDirectory

xPCFileSystem.GetCurrentDirectory
Current working folder for real-time application

Syntax

public string GetCurrentDirectory()

Description

Class: xPCFileSystem Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public string GetCurrentDirectory() gets the current working folder of the real-
time application. This method returns the current working folder name as a character
string.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-33



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDataLoggingObject.GetData
Copy signal data from target computer

Syntax

public double[] GetData()

Description

Class: xPCDataLoggingObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public double[] GetData() copies logged data from the target computer to the
development computer.

Introduced in R2011b

3-34



 xPCDataFileScSignalObject.GetData

xPCDataFileScSignalObject.GetData
Copy file scope signal data from target computer

Syntax

public double[] GetData()

Description

Class: xPCDataFileScSignalObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public double[] GetData() copies logged file scope signal data from the target
computer to the development computer.

Introduced in R2011b

3-35



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDataHostScSignalObject.GetData
Copy host scope signal data from target computer

Syntax

public double[] GetData()

Description

Class: xPCDataHostScSignalObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public double[] GetData() copies logged host scope signal data from the target
computer to the development computer.

Introduced in R2011b

3-36



 xPCDataLoggingObject.GetDataAsync

xPCDataLoggingObject.GetDataAsync
Asynchronously copy signal data from target computer

Syntax

public void GetDataAsync()

public void GetDataAsync(Object taskId)

Description

Class: xPCDataLoggingObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void GetDataAsync() asynchronously copies the logged data from the target
computer without blocking the calling thread.

public void GetDataAsync(Object taskId) receives taskId (user-defined object)
when the method copies the logged data.

Introduced in R2011b

3-37



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDataFileScSignalObject.GetDataAsync
Asynchronously copy file scope signal data from target computer

Syntax

public void GetDataAsync()

public void GetDataAsync(Object taskId)

Description

Class: xPCDataFileScSignalObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void GetDataAsync() asynchronously copies the file scope signal logged data
from the target computer without blocking the calling thread.

public void GetDataAsync(Object taskId) receives taskId (user-defined object)
when the method copies the file scope signal logged data. In other words, when the
asynchronous operation is complete.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method

Introduced in R2011b

3-38



 xPCDataHostScSignalObject.GetDataAsync

xPCDataHostScSignalObject.GetDataAsync
Asynchronously copy host scope signal data from target computer

Syntax

public void GetDataAsync()

public void GetDataAsync(Object taskId)

Description

Class: xPCDataHostScSignalObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void GetDataAsync() asynchronously copies the host scope signal logged
data from the target computer without blocking the calling thread.

public void GetDataAsync(Object taskId) receives taskId (user-defined object)
when the method copies the host scope signal logged data. In other words, when the
asynchronous operation is complete.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method

Introduced in R2011b

3-39



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDataLoggingObject.GetDataCompleted
Event when xPCDataLoggingObject.GetDataAsync is complete

Syntax

public event GetDataCompletedEventHandler GetDataCompleted

Description

Class: xPCDataLoggingObject Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event GetDataCompletedEventHandler GetDataCompleted occurs when
the asynchronous copying of logged data is complete.

Introduced in R2011b

3-40



 xPCDataFileScSignalObject.GetDataCompleted

xPCDataFileScSignalObject.GetDataCompleted
Event when xPCDataFileScSignalObject.GetDataAsync is complete

Syntax

public event GetFileScSignalDataCompletedEventHandler

GetDataCompleted

Description

Class: xPCDataFileScSignalObject Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event GetFileScSignalDataCompletedEventHandler

GetDataCompleted occurs when the asynchronous copying of file scope signal logged
data is complete.

Introduced in R2011b

3-41



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDataHostScSignalObject.GetDataCompleted
Event when xPCDataHostScSignalObject.GetDataAsync is complete

Syntax

public event GetDataCompletedEventHandler GetDataCompleted

Description

Class: xPCDataHostScSignalObject Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event GetDataCompletedEventHandler GetDataCompleted occurs when
the asynchronous copying of host scope signal logged data is complete.

Introduced in R2011b

3-42



 xPCDirectoryInfo.GetDirectories

xPCDirectoryInfo.GetDirectories
Subfolders of current folder

Syntax

public xPCDirectoryInfo[] GetDirectories()

Description

Class: xPCDirectoryInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCDirectoryInfo[] GetDirectories() returns the subfolders of the
current folder. This method returns the list of subfolders as an xPCDirectoryInfo array.

Introduced in R2011b

3-43



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileSystem.GetDrives
Drive names for logical drives on target computer

Syntax

public xPCDriveInfo[] GetDrives()

Description

Class: xPCFileSystem Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCDriveInfo[] GetDrives() retrieves the drive names of the logical drives
on the target computer. This method returns an xPCDriveInfo array.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-44



 xPCDirectoryInfo.GetFiles

xPCDirectoryInfo.GetFiles
File list from current folder

Syntax

public xPCFileInfo[] GetFiles()

Description

Class: xPCDirectoryInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileInfo[] GetFiles() returns a file list from the current folder. This
method returns the list of files as an xPCFileInfo array.

Introduced in R2011b

3-45



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDirectoryInfo.GetFileSystemInfos
File system information for files and subfolders in folder

Syntax

public xPCFileSystemInfo[] GetFileSystemInfos()

Description

Class: xPCDirectoryInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileSystemInfo[] GetFileSystemInfos() returns an array of
xPCFileSystemInfo entries. These entries represent the files and subfolders in a folder.

Introduced in R2011b

3-46



 xPCParameter.GetParam

xPCParameter.GetParam
Get parameter values from target computer

Syntax

public double[] GetParam()

Description

Class: xPCParameter Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public double[] GetParam() gets parameter values from the target computer as an
array of doubles.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-47



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCParameter.GetParamAsync
Asynchronous request to get parameter values from target computer

Syntax

public void GetParamAsync()

public void GetParamAsync(Object taskId)

Description

Class: xPCParameter Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void GetParamAsync() begins an asynchronous request to get parameter
values from the target computer. This method does not block the calling thread.

public void GetParamAsync(Object taskId) receives a user-defined object when
it completes its asynchronous request. taskId is a user-defined object that you can have
passed to the GetParamAsync method upon completion.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method

Introduced in R2011b

3-48



 xPCParameter.GetParamCompleted

xPCParameter.GetParamCompleted
Event when xPCParameter.GetParamAsync is complete

Description

Class: xPCParameter Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event GetParamCompletedEventHandler GetParamCompleted occurs
when an asynchronous get parameter operation is complete.

Introduced in R2011b

3-49



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCSignals.GetSignals
List of xPCSignal objects specified by array of signal identifiers

Syntax

public IList<xPCSignal> GetSignals(string[] arrayofBlockPath)

public IList<xPCSignal> GetSignals(int[] arrayOfSigId)

Description

Class: xPCSignals Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public IList<xPCSignal> GetSignals(string[] arrayofBlockPath) returns
list of xPCSignal objects specified by array of signal identifiers. This method creates an
ILIST of xPCSignal objects with an array of blockpaths. arrayofBlockPath is an
array of character strings that contains the full block path names to signals.

public IList<xPCSignal> GetSignals(int[] arrayOfSigId) returns the list
of xPCSignal objects specified by an array of signal identifiers. This method creates an
ILIST of xPCSignal objects with an array of signal identifiers. arrayOfSigId is an array
of 32-bit integers that specifies an array of signal identifiers.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-50



 xPCSignals.GetSignalsValue

xPCSignals.GetSignalsValue
Vector of signal values from array

Syntax

public double[] GetSignalsValue(int[] arrayOfSigId)

public double[] GetSignalsValue(IList<xPCSignals> arrayOfSigObjs)

Description

Class: xPCSignals Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public double[] GetSignalsValue(int[] arrayOfSigId) returns a vector of
signal values from an array containing its signal identifiers. arrayOfSigId is an array
of 32-bit signal identifiers. This method returns the vector as a double.

public double[] GetSignalsValue(IList<xPCSignals> arrayOfSigObjs)

returns a vector of signal values from an IList that contains xPCSignals objects. This
method returns the vector as a double.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-51



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCSignal.GetValue
Value of signal at moment of request

Syntax

public virtual double GetValue()

Description

Class: xPCSignal Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public virtual double GetValue() returns signal value at moment of request.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-52



 xPCTargetPC.Load

xPCTargetPC.Load
Load real-time application onto target computer

Syntax

public xPCApplication Load()

public xPCApplication Load(string AppFileName)

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCApplication Load() loads a real-time application onto the target
computer. This method returns an xPCApplication object.

public xPCApplication Load(string AppFileName) loads AppFileName onto the
target computer. AppFileName is a character string that specifies the full path name,
without file extension, to the real-time application that you are loading on the target
computer. This method returns an xPCApplication object.

Exception

Exception Condition

ArgumentException AppFileName is empty, contains only white spaces, or
contains invalid characters.

xPCException When problem occurs, query xPCException object Reason
property.

3-53



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Exception Condition

InvalidOperation-

Exception

AppFileName is a NULL reference (empty in Visual
Basic®) or an empty character string.

NotSupportedException AppFileName contains a colon (:) in the middle of the
character string.

PathTooLongException The specified path, file name, or both in AppFileName
exceed the system-defined maximum length. For example,
on Windows platforms, path names must be fewer than
248 characters. File names must be fewer than 260
characters.

SecurityException Caller does not have required permission.
UnauthorizedAccess-

Exception

System does not allow access to AppFileName.

Introduced in R2011b

3-54



 xPCTargetPC.LoadAsync

xPCTargetPC.LoadAsync
Asynchronous request to load real-time application onto target computer

Syntax

public void LoadAsync()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void LoadAsync() begins an asynchronous request to load a real-time
application onto a target computer.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method

Introduced in R2011b

3-55



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.LoadCompleted
Event when xPCTargetPC.LoadAsync is complete

Syntax

public event LoadCompletedEventHandler LoadCompleted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event LoadCompletedEventHandler LoadCompleted occurs when an
asynchronous load operation is complete.

Introduced in R2011b

3-56



 xPCTargetPC.Loaded

xPCTargetPC.Loaded
Event after xPCTargetPC.Load is complete

Syntax

public event EventHandler Loaded

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Loaded occurs after real-time application onto the
target computer is complete.

Introduced in R2011b

3-57



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.Loading
Event before xPCTargetPC.Load starts

Syntax

public event EventHandler Loading

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Loading occurs before the loading of the real-time
application starts on the target computer.

Introduced in R2011b

3-58



 xPCParameters.LoadParameterSet

xPCParameters.LoadParameterSet
Load parameter values for real-time application

Syntax

public void LoadParameterSet(string fileName)

Description

Class: xPCParameters Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void LoadParameterSet(string fileName) loads parameter values for
the real-time application in a file. fileName is a character string that represents the file
that contains the parameter values to be loaded.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-59



3 Simulink Real-Time API Reference for Microsoft .NET Framework

CancelPropertyNotificationEventArgs Class
CancelPropertyNotification event data

Syntax

public class CancelPropertyNotificationEventArgs :

PropertyNotificationEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class CancelPropertyNotificationEventArgs :

PropertyNotificationEventArgs contains data returned from the event of canceling
a property value change.

Properties

Properties C# Declaration Syntax Description

Cancel public bool Cancel {get;

set;}

Get or set value indicating
whether to cancel event.

NewValue public Object NewValue

{get;}

Get new value of property.

OldValue public Object OldValue

{get;}

Get old value of property.

PropertyName public virtual string

PropertyName {get;}

Get name of property that
changed.

Introduced in R2012a

3-60



 ConnectCompletedEventArgs Class

ConnectCompletedEventArgs Class
xPCTargetPC.ConnectCompleted event data

Syntax

public class ConnectCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class ConnectCompletedEventArgs : AsyncCompletedEventArgs

contains data returned from the event of asynchronously connecting to the target
computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been canceled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

Introduced in R2012a

3-61



3 Simulink Real-Time API Reference for Microsoft .NET Framework

DisconnectCompletedEventArgs Class
xPCTargetPC.DisconnectCompleted event data

Syntax

public class DisconnectCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class DisconnectCompletedEventArgs : AsyncCompletedEventArgs

contains data returned from the event of asynchronously disconnecting from the target
computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been canceled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

Introduced in R2012a

3-62



 GetDataCompletedEventArgs Class

GetDataCompletedEventArgs Class
GetDataCompleted event data

Syntax

public class GetDataCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetDataCompletedEventArgs : AsyncCompletedEventArgs

contains data returned from the event of asynchronously completing a data access.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been canceled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

State public Object State

{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

Introduced in R2012a

3-63



3 Simulink Real-Time API Reference for Microsoft .NET Framework

GetFileScSignalDataObjectCompletedEventArgs Class
xPCDataFileScSignalObject.GetDataCompleted event data

Syntax

public class GetFileScSignalDataObjectCompletedEventArgs :

GetDataCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetFileScSignalDataObjectCompletedEventArgs :

GetDataCompletedEventArgs contains data returned from the event of completing an
asynchronous data access to a file scope signal object.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been canceled.

Data public double[] Data

{get;}

Get the signal data collected by
file scope.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

FileScopeSignalObject public bool

IsScopeSignal {get;}

Get reference to parent
xPCFileScopeSignal object

IsScopeSignal public bool

IsScopeSignal {get;}

Get if signal is a scope signal
(true) or a time signal (false).

3-64



 GetFileScSignalDataObjectCompletedEventArgs Class

Properties C# Declaration Syntax Description

State public Object State

{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

3-65



3 Simulink Real-Time API Reference for Microsoft .NET Framework

GetHostScSignalDataObjectCompletedEventArgs
Class
xPCDataHostScSignalObject.DataObjectCompleted event data

Syntax

public class GetHostScSignalDataObjectCompletedEventArgs :

GetDataCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetHostScSignalDataObjectCompletedEventArgs :

GetDataCompletedEventArgs contains data returned by the event of completing an
asynchronous data access to a host scope signal object.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been canceled.

Data public double[] Data

{get;}

Get the signal data collected by
host scope

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

IsScopeSignal public bool

IsScopeSignal {get;}

Get if signal is a scope signal
(true) or a time signal (false).

3-66



 GetHostScSignalDataObjectCompletedEventArgs Class

Properties C# Declaration Syntax Description

ScopeSignalObject public xPCScopeSignal

ScopeSignalObject {get;}

Get reference to parent
xPCHostScopeSignal object

State public Object State

{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

3-67



3 Simulink Real-Time API Reference for Microsoft .NET Framework

GetLogDataCompletedEventArgs Class
xPCDataLoggingObject.GetDataCompleted event data

Syntax

public class GetLogDataCompletedEventArgs :

GetDataCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetLogDataCompletedEventArgs :

GetDataCompletedEventArgs contains data returned by the event of completing an
asynchronous data access to a data logging object.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been canceled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

Index public int Index {get;} Get log index.
LoggedData public double[]

LoggedData {get;}

Get logged data.

LogType public xPClogType

LogType {get;}

Get log type as xPClogType.

3-68



 GetLogDataCompletedEventArgs Class

Properties C# Declaration Syntax Description

State public Object State

{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

Introduced in R2012a

3-69



3 Simulink Real-Time API Reference for Microsoft .NET Framework

GetParamCompletedEventArgs Class
xPCParameter.GetParamCompleted event data

Syntax

public class GetParamCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetParamCompletedEventArgs : AsyncCompletedEventArgs

contains data returned by the event of completing an asynchronous parameter access.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been canceled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

Result public double[] Result

{get;}

Get data values of the
xPCParameter object

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

Introduced in R2012a

3-70



 LoadCompletedEventArgs Class

LoadCompletedEventArgs Class
xPCTargetPC.LoadCompleted event data

Syntax

public class LoadCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class LoadCompletedEventArgs : AsyncCompletedEventArgs contains
data returned by the event of asynchronously loading a real-time application onto the
target computer.

Properties

Properties C# Declaration Syntax Description

Application public xPCApplication

Application {get;}

Get reference to xPCApplication
object.

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been canceled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

Introduced in R2012a

3-71



3 Simulink Real-Time API Reference for Microsoft .NET Framework

PropertyNotificationEventArgs Class
PropertyNotification event data

Syntax

public class PropertyNotificationEventArgs :

PropertyChangedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class PropertyNotificationEventArgs :

PropertyChangedEventArgs contains data returned by the event of changing property
values.

Properties

Properties C# Declaration Syntax Description

NewValue public Object NewValue

{get;}

Get new value of property.

OldValue public Object OldValue

{get;}

Get old value of property.

PropertyName public virtual string

PropertyName {get;}

Get name of property that
changed.

Introduced in R2012a

3-72



 RebootCompletedEventArgs Class

RebootCompletedEventArgs Class
xPCTargetPC.RebootCompleted event data

Syntax

public class RebootCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class RebootCompletedEventArgs : AsyncCompletedEventArgs

contains data returned by the event of asynchronously restarting the target computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been canceled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

Introduced in R2012a

3-73



3 Simulink Real-Time API Reference for Microsoft .NET Framework

SetParamCompletedEventArgs Class
xPCParameter.SetParamCompleted event data

Syntax

public class SetParamCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class SetParamCompletedEventArgs : AsyncCompletedEventArgs

contains data returned by the event of asynchronously setting a parameter value.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been canceled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

NewValue public Object NewValue

{get;}

Get new value of property.

OldValue public Object OldValue

{get;}

Get old value of property.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

Introduced in R2012a

3-74



 UnloadCompletedEventArgs Class

UnloadCompletedEventArgs Class
xPCTargetPC.UnloadCompleted event data

Syntax

public class UnloadCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class UnloadCompletedEventArgs : AsyncCompletedEventArgs

contains data returned by the event of asynchronously unloading the real-time
application from the target computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been canceled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

Introduced in R2012a

3-75



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCApplication Class
Access to real-time application loaded on target computer

Syntax

public sealed class xPCApplication : xPCBaseNotification

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public sealed class xPCApplication : xPCBaseNotification initializes a
new instance of the xPCApplication class.

Methods

Method Description

xPCApplication.Start Start real-time application execution
xPCApplication.Stop Stop real-time application execution

Events

Events Description

xPCApplication.Started Event after xPCApplication.Start is complete
xPCApplication.-

Starting

Event before xPCApplication.Start executes

xPCApplication.Stopped Event after xPCApplication.Stop is complete
xPCApplication.-

Stopping

Event before xPCApplication.Stop executes

3-76



 xPCApplication Class

Properties

Properties C# Declaration Syntax Description Exception

AverageTeT public double

AverageTeT {get;}

Get the average task
execution time. The
first element contains
the average TET
number; the second
element contains how
long it took to achieve
the TET time.

Task execution time
(TET) measures how
long it takes the kernel
to run for one base-
rate time step. For a
multirate model, use
the profiler to find out
what the execution
time is for each rate.

xPCException —
When problem occurs,
query xPCException
object Reason property.

CPUOverload public bool

CPUOverload {get;}

Get state of
CPUOverload.

xPCException —
When problem occurs,
query xPCException
object Reason property.

ExecTime public double

ExecTime {get;}

Get execution time. xPCException —
When problem occurs,
query xPCException
object Reason property.

Logger public

xPCAppLogger

Logger {get;}

Get reference to the
real-time application
logging object.

 

MaximumTeT public double

MaximumTeT {get;}

Get the maximum task
execution time. The
first element contains
the maximum TET
number; the second
element contains how

xPCException —
When problem occurs,
query xPCException
object Reason property.

3-77



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Properties C# Declaration Syntax Description Exception

long it took to achieve
the TET time.

MinimumTeT public double

MinimumTeT {get;}

Get the minimum task
execution time. The
first element contains
the minimum TET
number; the second
element contains how
long it took to achieve
the TET time.

xPCException —
When problem occurs,
query xPCException
object Reason property.

Name public string Name

{get;}

Get the current name
of the loaded real-time
application

xPCException —
When problem occurs,
query xPCException
object Reason property.

Parameters public

xPCParameters

Parameters {get;}

Get reference to the
xPCParameters object.

 

SampleTime public double

SampleTime {get;

set;}

Get or set sample time.

Note: Some blocks
produce incorrect
results when you
change their sample
time at run time.
If you include such
blocks in your model,
the software displays
a warning message
during model build. To
avoid incorrect results,
change the sample time
in the original model,
and then rebuild and
download the model.

xPCException —
When problem occurs,
query xPCException
object Reason property.

3-78



 xPCApplication Class

Properties C# Declaration Syntax Description Exception

Scopes public xPCScopes

Scopes {get;}

Get collection of scopes
assigned to the real-
time application.

 

Signals public xPCSignals

Signals {get;}

Get reference to
xPCSignals object.

 

Status public

xPCAppStatus

Status {get;}

Get simulation status.
See xPCAppStatus
Enumerated Data
Type.

xPCException —
When problem occurs,
query xPCException
object Reason property.

StopTime public double

StopTime {get;

set;}

Get and set stop time. xPCException —
When problem occurs,
query xPCException
object Reason property.

Target public xPCTargetPC

Target {get;}

Get reference to parent
xPCTargetPC object.

 

Introduced in R2011b

3-79



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCAppLogger Class
Access to real-time application loggers

Syntax

public class xPCAppLogger : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCAppLogger : xPCApplicationObject initializes a new instance
of the xPCAppLogger class.

Properties

Properties C# Declaration Syntax Description

LogMode public xPCLogMode

LogMode {get; set;}

Control which data points to log.
See xPCLogMode Enumerated
Data Type.

LogModeValue public int LogModeValue

{get; set;}

Get or set the value-equidistant
logging. Set the value to the
difference in signal values.

MaxLogSamples public int MaxLogSamples

{get;}

Get maximum number of
samples that can be in log
buffer.

OutputLog public xPCOutputLogger

OutputLog {get;}

Return a reference to the
xPCOutputLogger object.

StateLog public xPCStateLogger

StateLog {get;}

Return a reference to the
xPCStateLogger object.

3-80



 xPCAppLogger Class

Properties C# Declaration Syntax Description

TETLog public xPCTETLogger

TETLog {get;}

Return a reference to the
xPCTETLogger object.

TimeLog public xPCTimeLogger

TimeLog {get;}

Return a reference to the
xPCTimeLogger object.

Introduced in R2011b

3-81



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDataFileScSignalObject Class
Object that holds logged file scope signal data

Syntax

public class xPCDataFileScSignalObject : xPCFileScopeStream,

IxPCDataService

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDataFileScSignalObject : xPCFileScopeStream,

IxPCDataService  accesses an object that holds logged file scope signal data.

Methods

Method Description

xPCDataFileSc-

SignalObject.GetData

Copy file scope signal data from target computer

xPCDataFileSc-

SignalObject.-

GetDataAsync

Asynchronously copy file scope signal data from target computer

Events

Event Description

xPCDataFileSc-

SignalObject.-

GetDataCompleted

Event when xPCDataFileScSignalObject.GetDataAsync is
complete

3-82



 xPCDataFileScSignalObject Class

Properties

Property C# Declaration Syntax Description

ScopeSignal-

Object

public xPCFileScopeSignal

ScopeSignalObject {get;}

Get parent scope signal
xPCFileScopeSignal object.

Introduced in R2011b

3-83



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDataHostScSignalObject Class
Object that holds logged host scope signal data

Syntax

public class xPCDataHostScSignalObject :

xPCApplicationNotficationObject, IxPCDataService,

IxPCDataServiceAsync

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDataHostScSignalObject :

xPCApplicationNotficationObject, IxPCDataService,

IxPCDataServiceAsync accesses an object that holds logged host scope signal data.

Methods

Method Description

xPCDataHostSc-

SignalObject.GetData

Copy host scope signal data from target computer

xPCDataHostSc-

SignalObject.-

GetDataAsync

Asynchronously copy host scope signal data from target computer

Events

Event Description

xPCDataHostSc-

SignalObject.-

GetDataCompleted

Event when xPCDataHostScSignalObject.GetDataAsync is
complete

3-84



 xPCDataHostScSignalObject Class

Properties

Property C# Declaration Syntax Description

Decimation public int Decimation {get;

set;}

A number n, where every nth sample is
acquired in a scope window.

NumSamples public int NumSamples {get;

set;}

Get or set number of contiguous samples
captured during the acquisition of a
data package. The scope writes data
samples into a memory buffer of size
NumSamples.

If the scope stops before capturing this
number of samples, the scope has the
collected data up to the end of data
collection. It then has zeroes for the
remaining uncollected data. Note what
type of data you are collecting, it is
possible that your data contains zeroes.

ScopeSignal-

Object

public xPCHostScopeSignal

ScopeSignalObject {get;}

Get parent scope signal
xPCHostScopeSignal object.

Startindex public int StartIndex {get;

set;}

Get and set the index of the first sample
that you retrieve from the log.

Introduced in R2011b

3-85



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDataLoggingObject Class

Object that holds logged data

Syntax

public class xPCDataLoggingObject : xPCApplicationNotficationObject,

IxPCDataService, xPCDataServiceAsync

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDataLoggingObject : xPCApplicationNotficationObject,

IxPCDataService, xPCDataServiceAsync accesses an object that holds logged data.

Methods

Method Description

xPCDataLoggingObject.-

GetData

Copy signal data from target computer

xPCDataLoggingObject.-

GetDataAsync

Asynchronously copy signal data from target computer

Events

Event Description

xPCDataLoggingObject.-

GetDataCompleted

Event when xPCDataLoggingObject.GetDataAsync is complete

3-86



 xPCDataLoggingObject Class

Properties

Property C# Declaration Syntax Description

Decimation public int Decimation {get;

set;}

A number n, where every nth sample is
acquired in a scope window.

LogId public int LogId {get;}

NumSamples public int NumSamples {get;

set;}

Get or set number of contiguous samples
captured during the acquisition of a data
package.

Startindex public int StartIndex {get;

set;}

Get and set the index of the first sample
that you retrieve from the log.

Introduced in R2011b

3-87



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDirectoryInfo Class
Access folders and subfolders of target computer file system

Syntax

public class xPCDirectoryInfo : xPCFileSystemInfo

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDirectoryInfo : xPCFileSystemInfo accesses folders and
subfolders of target computer file system.

A fully qualified folder name can have a maximum of 248 characters, including the drive
letter, colon, and backslash.

Constructor

Constructor Description

xPCDirectoryInfo Construct new instance of the xPCDirectoryInfo class on specified
path

Methods

Method Description

xPCDirectoryInfo.-

Create

Create folder

xPCDirectoryInfo.-

Delete

Delete empty xPCDirectoryInfo object

3-88



 xPCDirectoryInfo Class

Method Description

xPCDirectoryInfo.-

GetDirectories

Subfolders of current folder

xPCDirectoryInfo.-

GetFiles

File list from current folder

xPCDirectoryInfo.-

GetFileSystemInfos

File system information for files and subfolders in folder

Properties

Property C# Declaration Syntax Description Exception

CreationTimepublic override

DateTime

CreationTime {get;}

Get creation time of the
current FileSystemInfo
object.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Exists public override bool

Exists {get;}

Get a Boolean value that
indicates the existence of
the folder. A value of 1
indicates that the folder
exists, 0 indicates that it
does not.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Extension public string

Extension {get;}

Get character string that
represents the extension
part of the file.

 

FullName public virtual

string FullName

{get;}

Get full path name of the
folder or file.

 

Name public override

string Name {get;}

Get the name of this
xPCDirectoryInfo instance
as a character string.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Parent public

xPCDirectoryInfo

Parent {get;}

Get the parent folder of a
specified subfolder.

xPCException — When
problem occurs, query
xPCException object
Reason property.

3-89



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Property C# Declaration Syntax Description Exception

Root public

xPCDirectoryInfo

Root {get;}

Get the root portion of a
path.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Introduced in R2011b

3-90



 xPCDriveInfo Class

xPCDriveInfo Class
Information for target computer drive

Syntax

public class xPCDriveInfo

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDriveInfo accesses information on a target computer drive.

Constructor

Constructor Description

xPCDriveInfo Initialize new instance of xPCDriveInfo class

Methods

Method Description

xPCDriveInfo.Refresh Synchronize with file drives on target computer

Properties

Property C# Declaration Syntax Description Exception

Available-

Freespace

public long

AvailableFreeSpace

{get;}

Indicate amount of
available free space on
drive.

xPCException — When
problem occurs, query
xPCException object
Reason property.

3-91



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Property C# Declaration Syntax Description Exception

DriveFormat public string

DriveFormat {get;}

Get name of file system
type, such as FAT16 or
FAT32.

xPCException — When
problem occurs, query
xPCException object
Reason property.

DriveType public slrtDriveType

DriveType {get;}

Get drive type, such as
DRIVE_REMOVABLE,
DRIVE_FIXED, or
DRIVE_RAMDISK.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Name public string Name

{get;}

Get name of drive. xPCException — When
problem occurs, query
xPCException object
Reason property.

Root-

Directory

public

xPCDirectoryInfo

RootDirectory {get;}

Get root folder of drive. xPCException — When
problem occurs, query
xPCException object
Reason property.

TotalSize public long

TotalSize {get;}

Get total size of drive in
bytes.

xPCException — When
problem occurs, query
xPCException object
Reason property.

VolumeLabel public string

VolumeLabel {get;}

Get volume label of drive. xPCException — When
problem occurs, query
xPCException object
Reason property.

Introduced in R2011b

3-92



 xPCException Class

xPCException Class
Information for xPCException

Syntax

public class xPCException : Exception, ISerializable

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCException : Exception, ISerializable accesses information
on Simulink Real-Time exceptions.

Constructor

Constructor Description

xPCException Construct new instance of xPCException class

Properties

Property C# Declaration Syntax Description

Data public virtual IDictionary

Data {get;}

Get collection of key/value pairs
that provide additional user-defined
information about the exception.

HelpLink public virtual string

HelpLink {get; set;}

Get or set link to the help file
associated with this exception.

InnerException public Exception

InnerException {get;}

Get Exception instance that caused
the current exception.

Message public override string

Message {get;}

Get exception message. Overrides
Exception.Message property.

3-93



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Property C# Declaration Syntax Description

Reason public xPCExceptionReason

Reason {get;}

Get xPCExceptionReason reason. See
xPCExceptionReason Enumerated
Data Type.

Source public virtual string Source

{get; set;}

Get or set name of real-time
application or object that causes the
error.

StackTrace public virtual string

StackTrace {get;}

Get character string representation
of the frames on the call stack at the
time the method emits the current
exception.

TargetPCObject public xPCTargetPC

TargetPCObject {get;}

Get xPCTargetPC object that raised
the error.

TargetSite public MethodBase TargetSite

{get;}

Get method that emits the current
exception.

Introduced in R2011b

3-94



 xPCFileInfo Class

xPCFileInfo Class

Access to file and xPCFileStream objects

Syntax

public class xPCDriveInfo

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDriveInfo accesses information on a target computer drive.

There are the following limitations:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

Constructor

Constructor Description

xPCFileInfo Construct new instance of xPCFileInfo class

3-95



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Methods

Method Description

xPCFileInfo.CopyToHost Copy file from target computer file system to development computer
file system

xPCFileInfo.Create Create file in specified path name
xPCFileInfo.Delete Permanently delete file on target computer
xPCFileInfo.Open Open file
xPCFileInfo.OpenRead Create read-only xPCFileStream object
xPCFileInfo.Rename Rename file

Properties

Property C# Declaration Syntax Description

Directory public xPCDirectoryInfo

Directory {get;}

Get an xPCDirectoryInfo object.

DirectoryName public string DirectoryName

{get;}

Get a character string that
represents the full folder path name.

Exists public override bool Exists

{get;}

Get value that indicates whether a
file exists.

Length public long Length {get;} Get the size, in bytes, of the current
file.

Name public override string Name

{get;}

Get the name of the file.

Introduced in R2011b

3-96



 xPCFileScope Class

xPCFileScope Class
Access to file scopes

Syntax

public class xPCFileScope : xPCScope

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScope : xPCScope initializes a new instance of the
xPCFileScope class.

There are the following limitations:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

Methods

The xPCFileScope class inherits methods from xPCScope Class.

Events

The xPCFileScope class inherits events from xPCScope Class.

3-97



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Properties

The xPCFileScope class inherits its other properties from xPCScope Class.

Property C# Declaration Syntax Description Exception

AutoRestart public bool

AutoRestart {get;

set;}

Get or set the file scope
autorestart setting.
AutoRestart is a
Boolean. Values are 'on'
and 'off'.

xPCException — When
problem occurs, query
xPCException object
Reason property.

DataTime-

Object

public

xPCDataHostScSignalObject

DataTimeObject {get;}

Get data time object. xPCException — When
problem occurs, query
xPCException object
Reason property.

DynamicMode public bool

DynamicMode {get;

set;}

Get or set ability to
create multiple log files
for file scopes. Values
are 'on' and 'off'.
By default, the value is
'off'.

xPCException — When
problem occurs, query
xPCException object
Reason property.

FileMode public SCFILEMODE

FileMode {get; set;}

Get or set write mode of
file. See xPCFileMode
Enumerated Data Type.

xPCException — When
problem occurs, query
xPCException object
Reason property.

FileName public string FileName

{get; set;}

Get or set file name for
scope.

 

MaxWrite-

FileSize

public uint

MaxWriteFileSize {get;

set;}

Get or set the maximum
file size in bytes allowed
before incrementing to
the next file.

When the size of
a log file reaches
MaxWriteFileSize, the
software creates the next
numbered file name. It
continues logging data,
incrementing to the next

xPCException — When
problem occurs, query
xPCException object
Reason property.

3-98



 xPCFileScope Class

Property C# Declaration Syntax Description Exception

file as required, until it
reaches the highest log
file number you specified.

If the software cannot
create additional log files,
it overwrites the first log
file.

This value must be a
multiple of WriteSize.
Default is 536870912.

Signals public xPCTarget-

ScopeSignalCollection

Signals {get;}

Get collection of file scope
signals (xPCFileScope-
SignalCollection)
assigned to this scope
object.

 

Trigger-

Signal

public

xPCTgtScopeSignal

TriggerSignal {get;

set;}

Get or set file
scope signal
(xPCFileScopeSignal)
used to trigger the scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

WriteSize public int WriteSize

{get; set;}

Get or set the unit
number of bytes for
memory buffer writes.
The memory buffer
accumulates data in
multiples of write size.
WriteSize must be
multiple of 512.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Introduced in R2011b

3-99



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileScopeCollection Class
Collection of xPCFileScope objects

Syntax

public class xPCFileScopeCollection :

xPCScopeCollection<xPCFileScope>

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScopeCollection :

xPCScopeCollection<xPCFileScope> initializes collection of xPCFileScope objects.

Methods

Method Description

xPCFileScopeCollection.-

Add

Create xPCFileScope object with the next available scope ID as key

xPCFileScopeCollection.-

Refresh

Synchronize with file scopes on target computer

xPCFileScopeCollection.-

StartAll

Start all file scopes in one call

xPCFileScopeCollection.-

StopAll

Stop all file scopes in one call

Introduced in R2011b

3-100



 xPCFileScopeSignal Class

xPCFileScopeSignal Class
Access to file scope signals

Syntax

public class xPCFileScopeSignal : xPCScopeSignal

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScopeSignal : xPCScopeSignal initializes access to file
scope signals.

Properties

Property C# Declaration Syntax Description

FileScopeSignal-

DataObject

public

xPCDataFileScSignalObject

FileScopeSignalDataObject

{get;}

Get the data
xPCDataFileScSignalObject
object associated with this
xPCFileScopeSignal object.

Scope public xPCFileScope Scope

{get;}

Get parent file scope xPCFileScope
object.

Introduced in R2011b

3-101



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileScopeSignalCollection Class
Collection of xPCFileScopeSignal objects

Syntax

public class xPCFileScopeSignalCollection :

xPCScopeSignalCollection<xPCFileScopeSignal>

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScopeSignalCollection :

xPCScopeSignalCollection<xPCFileScopeSignal> initializes collection of
xPCFileScopeSignal objects.

Methods

Method Description

xPCFileScope-

SignalCollection.Add

Add signals to file scope

xPCFileScope-

SignalCollection.-

Refresh

Synchronize with signals for associated scope on target computer

Properties

Property C# Declaration Syntax Description Exception

Item public

xPCFileScopeSignal

Get xPCFileScopeSignal
object from signal name
(blkpath).

xPCException — When
problem occurs, query
xPCException object
Reason property.

3-102



 xPCFileScopeSignalCollection Class

Property C# Declaration Syntax Description Exception

Item[string blkpath]

{get;}

blkpath is the signal
name that represents a
signal object added to its
parent xPCHostScope
object. This property
returns the file scope
signal object as type
xPCFileScopeSignal.

Introduced in R2011b

3-103



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileStream Class
Access xPCFileStream objects

Syntax

public class xPCFileStream : IDisposable

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileStream : IDisposable initializes xPCFileStream objects.
These objects expose the file stream around a file.

There are the following limitations:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

Constructor

Constructor Description

xPCFileStream Construct new instance of xPCFileStream class

3-104



 xPCFileStream Class

Methods

Method Constructor

xPCFileStream.Close Close current stream
xPCFileStream.Read Read block of bytes from stream and write data to buffer
xPCFileStream.Write Write block of bytes to file stream
xPCFileStream.-

WriteByte

Write byte to current position in file stream

Property

Property C# Declaration Syntax Description Exception

Length public long Length

{get;}

Get length of file stream. xPCException — When
problem occurs, query
xPCException object Reason
property.

Introduced in R2011b

3-105



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileSystem Class
File system drives and folders

Syntax

public class xPCFileSystem

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileSystem initializes file system drive and folder objects.

There are the following limitations:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

Methods

Method Description

xPCFileSystem.-

CreateDirectory

Create folder

3-106



 xPCFileSystem Class

Method Description

xPCFileSystem.-

GetCurrentDirectory

Current working folder for real-time application

xPCFileSystem.-

GetDrives

Drive names for the logical drives on the target computer

xPCFileSystem.-

RemoveFile

Remove file name from target computer

xPCFileSystem.-

SetCurrentDirectory

Current folder

Introduced in R2011b

3-107



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileSystemInfo Class
File system information

Syntax

public abstract class xPCFileSystemInfo

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public abstract class xPCFileSystemInfo initializes file system information
objects.

Constructor

Constructor Description

xPCFileSystemInfo Initialize new instance of xPCFileSystemInfo class

Methods

Method Description

xPCFileSystemInfo.-

Delete

Delete current folder

Properties

Property C# Declaration Syntax Description

CreationTime public DateTime CreationTime

{get;}

Get creation time of current
FileSystemInfo object.

3-108



 xPCFileSystemInfo Class

Property C# Declaration Syntax Description

Exists public abstract bool Exists

{get;}

Get value that indicates existence of file
or folder.

Extension public string Extension {get;} Get character string that represents file
extension.

FullName public virtual string FullName

{get;}

Get full path name of file or folder.

Name public abstract string Name

{get;}

Get name of folder.

Introduced in R2011b

3-109



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCHostScope Class
Access to host scopes

Syntax

public class xPCHostScope : xPCScope

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScope : xPCScope initializes a new instance of the
xPCHostScope class.

Methods

The xPCHostScope class inherits methods from xPCScope Class.

Events

The xPCHostScope class inherits events from xPCScope Class.

Properties

The xPCHostScope class inherits its other properties from xPCScope Class.

Property C# Declaration Syntax Description Exception

DataTime-

Object

public

xPCDataHostSc-

SignalObject

DataTimeObject

{get;}

Get host scope time data
object xPCDataHost-
ScSignalObject associated
with this scope.

 

3-110



 xPCHostScope Class

Property C# Declaration Syntax Description Exception

Signals public xPCTarget-

ScopeSignal-

Collection Signals

{get;}

Get collection of host
scope signals (xPCHost-
ScopeSignalCollection)
assigned to this scope
object.

 

Trigger-

Signal

public xPCTgtScope-

Signal TriggerSignal

{get; set;}

Get or set host scope
signal (xPCHostScope-
Signal) used to trigger the
scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Introduced in R2011b

3-111



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCHostScopeCollection Class
Collection of xPCHostScope objects

Syntax

public class xPCHostScopeCollection :

xPCScopeCollection<xPCHostScope>

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScopeCollection :

xPCScopeCollection<xPCHostScope>  initializes collection of xPCHostScope objects.

Methods

Method Description

xPCHostScopeCollection.-

Add

Create xPCHostScope object with the next available scope ID as key

xPCHostScopeCollection.-

Refresh

Refresh host scope object state

xPCHostScopeCollection.-

StartAll

Start all host scopes in one call

xPCHostScopeCollection.-

StopAll

Stop all host scopes in one call

Introduced in R2011b

3-112



 xPCHostScopeSignal Class

xPCHostScopeSignal Class
Access to host scope signals

Syntax

public class xPCHostScopeSignal : xPCScopeSignal

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScopeSignal : xPCScopeSignal initializes access to host
scope signals.

Properties

Property C# Declaration Syntax Description

HostScopeSignal-

DataObject

public

xPCDataHostScSignalObject

HostScopeSignalDataObject

{get;}

Get host scope signal data object.

Scope public xPCHostScope Scope

{get;}

Get host scope.

Introduced in R2011b

3-113



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCHostScopeSignalCollection Class
Collection of xPCHostScopeSignal objects

Syntax

public class xPCHostScopeSignal : xPCScopeSignal

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScopeSignal : xPCScopeSignal represents a collection of
xPCHostScopeSignal objects.

Methods

Method Description

xPCHostScope-

SignalCollection.Add

Create xPCHostScopeSignal object

xPCHostScope-

SignalCollection.-

Refresh

Synchronize signals for associated host scopes on target computer

Properties

Property C# Declaration Syntax Description Exception

Item public

xPCHostScopeSignal

Get xPCHostScopeSignal
object from signal name
(blkpath).

xPCException — When
problem occurs, query
xPCException object
Reason property.

3-114



 xPCHostScopeSignalCollection Class

Property C# Declaration Syntax Description Exception

Item[string blkpath]

{get;}

blkpath is the signal
name that represents a
signal object added to its
parent xPCHostScope
object.

This property returns the
file scope signal object as
type xPCHostScopeSignal.

Introduced in R2011b

3-115



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCLog Class
Base data logging class

Syntax

public abstract class xPCLog : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public abstract class xPCLog : xPCApplicationObject represents the base
data logging class.

Properties

Properties C# Declaration Syntax Description

IsEnabled public abstract bool

IsEnabled {get;}

Get whether to enable or disable
logging.

NumLogSamples public int NumLogSamples

{get;}

Get number of samples in log
buffer.

NumLogWraps public int NumLogWraps

{get;}

Get number of times log buffer
wraps.

Introduced in R2011b

3-116



 xPCOutputLogger Class

xPCOutputLogger Class
Access to output logger

Syntax

public class xPCOutputLogger : xPCLog

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCOutputLogger : xPCLog  initializes a new instance of the
xPCOutputLogger class.

Properties

The xPCOutputLogger class inherits its other properties from xPCLog Class.

Properties C# Declaration Syntax Description

DataLoggingObjects public

IList<xPCDataLoggingObject>

DataLoggingObjects {get;}

Get ILIST of application data
logging objects.

IsEnabled public override bool

IsEnabled {get;}

Get whether to enable or
disable logging. Overrides
xPCLog.IsEnabled.

Item public

xPCDataLoggingObject

Item[int index] {get;}

Get xPCDataLogging object
specified by index (index).
index is the index to the
specified logging output. This
property returns an object of type
xPCDataLoggingObject.

3-117



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Properties C# Declaration Syntax Description

NumOutputs public int NumOutputs

{get;}

Return a reference to the
xPCOutputLogger object.

Introduced in R2011b

3-118



 xPCParameter Class

xPCParameter Class
Single run-time tunable parameter

Syntax

public class xPCParameter : xPCApplicationNotficationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCParameter : xPCApplicationNotficationObject initializes
a new instance of the xPCParameter class. An xPCParameter object represents a
single specific real-time application parameter. You can tune the parameter using
xPCParameter objects.

Methods

Method Description

xPCParameter.GetParam Get parameter values from target computer
xPCParameter.-

GetParamAsync

Asynchronous request to get parameter values from target computer

xPCParameter.SetParam Change value of parameter on target computer
xPCParameter.-

SetParamAsync

Asynchronous request to change parameter value on target
computer

Events

Event Description

xPCParameter.-

GetParamCompleted

Event when xPCParameter.GetParamAsync is complete

3-119



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Event Description

xPCParameter.-

SetParamCompleted

Event when xPCParameter.SetParamAsync is complete

Properties

Property C# Declaration Syntax Description Exception

BlockPath public string

BlockPath {get;}

Get the full block path
name of the parameter
for an instance of an
xPCParameter object.

 

DataType public string

DataType {get;}

Get the Simulink type, as
a character string, of the
parameter for an instance
of an xPCParameter
object.

 

Dimensions public int[]

Dimensions {get;}

Get an array that contains
elements of dimension
lengths.

 

Name public string Name

{get;}

Get the name of the
parameter to an instance
of an xPCParameter

 

ParameterId public int

ParameterId {get;}

Get the numerical index
(identifier) that maps
to an instance of an
xPCParameter object.

 

Rank public int Rank

{get;}

Get the number of
dimensions of the
parameter

 

Value public Array Value

{get; set;}

Get and set the parameter
value.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Introduced in R2011b

3-120



 xPCParameters Class

xPCParameters Class
Access run-time parameters

Syntax

public class xPCParameters : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCParameters : xPCApplicationObject initializes a new
instance of the xPCParameters class. An xPCParameters object is a container to access
run-time parameters.

Methods

Method Description

xPCParameters.-

LoadParameterSet

Load parameter values for real-time application

xPCParameters.Refresh Refresh state of object
xPCParameters.-

SaveParameterSet

Save parameter values of real-time application

Properties

Property C# Declaration Syntax Description

NumParameters public int NumParameters

{get;}

Get the total number of tunable
parameters in the real-time
application.

3-121



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Property C# Declaration Syntax Description

Item public xPCParameter Item[int

paramIdx] {get;} or

public xPCParameter

Item[string blkName, string

paramName] {get;}

Return reference to xPCParameter
object specified by its parameter
identifier (paramIdx) or parameter
name (paramname).

paramIdx is a 32-bit integer
parameter identifier that represents
the actual signal.

blkName is a character string that
specifies the block path name for
the actual block that contains the
parameter. paramName is a character
string that specifies the parameter
name.

This method returns the
xPCParameter object that represents
the actual parameter.

Introduced in R2011b

3-122



 xPCScope Class

xPCScope Class

Access Simulink Real-Time scopes

Syntax

public abstract class xPCScope : xPCApplicationNotficationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public abstract class xPCScope : xPCApplicationNotficationObject 

initializes a new instance of the xPCScope class.

Methods

Method Description

xPCScope.Start Start scope
xPCScope.Stop Stop scope
xPCScope.Trigger Software-trigger start of data acquisition for scopes

Events

Event Description

xPCScope.ScopeStarted Event after xPCScope.Start is complete
xPCScope.ScopeStarting Event before xPCScope.Start executes
xPCScope.ScopeStopped Event after xPCScope.Stop is complete
xPCScope.ScopeStopping Event before xPCScope.Stop executes

3-123



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Properties

Property C# Declaration Syntax Description Exception

Decimation public int

Decimation {get;

set;}

Get or set a number n,
where every nth sample
is acquired in a scope
window.

xPCException — When
problem occurs, query
xPCException object
Reason property.

NumPrePost-

Samples

public int

NumPrePostSamples

{get; set;}

Get or set number of
samples collected before
or after a trigger event.
The default value is 0.
Entering a negative
value collects samples
before the trigger event.
Entering a positive value
collects samples after
the trigger event. If you
set TriggerMode to
'FreeRun', changing
this property does not
change data acquisition.

xPCException — When
problem occurs, query
xPCException object
Reason property.

NumSamples public int

NumSamples {get;

set;}

Get or set number of
contiguous samples
captured during the
acquisition of a data
package. The scope writes
data samples into a
memory buffer of size
NumSamples.

If the scope stops before
capturing this number of
samples, the scope has
the collected data up to
the end of data collection.
It then has zeroes for the
remaining uncollected
data. Note what type of
data you are collecting, it

xPCException — When
problem occurs, query
xPCException object
Reason property.

3-124



 xPCScope Class

Property C# Declaration Syntax Description Exception

is possible that your data
contains zeroes.

ScopeId public int ScopeId

{get;}

A numeric index, unique
for each scope.

 

Status public SCSTATUS

Status {get;}

Indicate whether data is
being acquired, the scope
is waiting for a trigger,
the scope has been
stopped (interrupted),
or acquisition is
finished. Values
are 'Acquiring',
'Ready for being

Triggered',
'Interrupted', and
'Finished'.

xPCException — When
problem occurs, query
xPCException object
Reason property.

TriggerAnySignalpublic int

TriggerAnySignal

{get; set;}

Get or set xPCSignal
Class object for trigger
signal. If TriggerMode
is 'Signal', this signal
triggers the scope even
if it was not added to the
scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

TriggerLevel public double

TriggerLevel {get;

set;}

Get or set trigger
level. If TriggerMode
is 'Signal',
TriggerLevelindicates
the value the signal has
to cross to trigger the
scope and start acquiring
data. You can cross the
trigger level with either a
rising or falling signal.

xPCException — When
problem occurs, query
xPCException object
Reason property.

3-125



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Property C# Declaration Syntax Description Exception

TriggerMode public

SCTRIGGERMODE

TriggerMode {get;

set;}

Get or set trigger mode
for a scope. Valid values
are 'FreeRun' (default),
'Software', 'Signal',
and 'Scope'.

xPCException — When
problem occurs, query
xPCException object
Reason property.

TriggerScope public int

TriggerScope {get;

set;}

If TriggerMode is
'Scope', TriggerScope
identifies the scope to
use for a trigger. You
can set a scope to trigger
when another scope is
triggered. You do this
operation by setting the
slave scope property
TriggerScope to the
scope index of the master
scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

TriggerScope-

Sample

public int

TriggerScopeSample

{get; set;}

If TriggerMode
is 'Scope',
TriggerScopeSample

specifies the number of
samples the triggering
scope is to acquire before
triggering a second
scope. This value must be
nonnegative.

xPCException — When
problem occurs, query
xPCException object
Reason property.

3-126



 xPCScope Class

Property C# Declaration Syntax Description Exception

TriggerSlope public TRIGGERSLOPE

{get; set;}

If TriggerMode is
'Signal', indicates
whether the trigger is
on a rising or falling
signal. Values are of
type SLTRIGGERSLOPE:
SLTRIGGERSLOPE.EITHER

(default),
SLTRIGGERSLOPE.RISING,
and
SLTRIGGERSLOPE.FALLING.

This property returns the
value SCTRIGGERSLOPE.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Type public string Type

{get;}

Get scope type as a
character string.

 

For file scopes, the NumSamples parameter works with the autorestart parameter.

• Autorestart is on — When the scope triggers, the scope starts collecting data into a
memory buffer. A background task examines the buffer and writes data to the disk
continuously, appending new data to the end of the file. When the scope reaches the
number of samples that you specified, it starts collecting data again, overwriting the
memory buffer. If the background task cannot keep pace with data collection, data can
be lost.

• Autorestart is off — When the scope triggers, the scope starts collecting data into
a memory buffer. It stops when it has collected the number of samples that you
specified. A background task examines the buffer and writes data to the disk
continuously, appending the new data to the end of the file.

Introduced in R2011b

3-127



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCScopeCollectionEventArgs Class
xPCScopeCollection.Added event data

Syntax

public class xPCScopeCollectionEventArgs : EventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopeCollectionEventArgs : EventArgs contains data
returned by the event of adding a scope to a scope collection.

Properties

Properties C# Declaration Syntax Description

Scope public xPCScope Scope

{get;}

Get xPCScope object you added.

Introduced in R2011b

3-128



 xPCScopeRemCollectionEventArgs Class

xPCScopeRemCollectionEventArgs Class
xPCScopeCollection.Removed event data

Syntax

public class xPCScopeRemCollectionEventArgs : EventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopeRemCollectionEventArgs : EventArgs contains data
returned by the event of removing a scope from a scope collection.

Properties

Properties C# Declaration Syntax Description

ScopeNumber public int ScopeNumber

{get;}

Get scope number of the scope
that you have removed.

Introduced in R2011b

3-129



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCScopeSignalCollectionEventArgs Class
xPCScopeSignalCollection.Added event data

Syntax

public class xPCScopeSignalCollectionEventArgs : EventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopeSignalCollectionEventArgs : EventArgs contains
data returned by the event of adding a signal to a scope signal collection.

Properties

Properties C# Declaration Syntax Description

Scope public xPCScope Scope

{get;}

Get parent xPCScope object

Signal public xPCSignal Signal

{get;}

Get xPCSignal object that you
added to collection.

Introduced in R2011b

3-130



 xPCScopes Class

xPCScopes Class

Access scope objects

Syntax

public class xPCScopes : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopes : xPCApplicationObject initializes a new instance of
the xPCScopes class.

Methods

Method Description

xPCScopes.RefreshAll Synchronize with all scopes on target computer

Properties

Property C# Declaration Syntax Description

FileScopes public

xPCFileScopeCollection

FileScopes {get;}

Get collection of file scopes
(xPCFileScopeCollection).

HostScopes public

xPCHostScopeCollection

HostScopes {get;}

Get collection of host scopes
(xPCHostScopeCollection).

3-131



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Property C# Declaration Syntax Description

ScopeObjectDict public IDictionary<int,

xPCScope> ScopeObjectDict

{get;}

Get entire scopes object as a
Dictionary object.

ScopeObjectList public IList<xPCScope>

ScopeObjectList {get;}

Get entire scopes object as a list.

TargetScopes public

xPCTargetScopeCollection

TargetScopes {get;}

Get collection of target scopes
(xPCTargetScopeCollection).

Introduced in R2011b

3-132



 xPCSignal Class

xPCSignal Class
Access signal objects

Syntax

public class xPCSignal : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCSignal : xPCApplicationObject  initializes a new instance of
the xPCSignal class.

Methods

Method Description

xPCSignal.GetValue Value of signal at moment of request
xPCSignal.TryGetValue Status of get signal value at moment of request

Properties

Property C# Declaration Syntax Description

BlockPath public virtual string

BlockPath {get;}

Get block path name (signal name) of
the signal.

DataType public virtual string DataType

{get;}

Get Simulink data type name.

Label public virtual string Label

{get;}

Get label of signal. If no label is
associated with the signal, this property
returns an empty character string.

3-133



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Property C# Declaration Syntax Description

SignalId public virtual int SignalId

{get;}

Get numeric identifier that represents
the signal object.

UserData public Object UserData {get;

set;}

Get and set user-defined object that you
can use to store and retrieve additional
information.

Width public virtual int Width

{get;}

Get signal width.

Introduced in R2011b

3-134



 xPCSignals Class

xPCSignals Class
Access signal objects

Syntax

public class xPCSignals : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCSignals : xPCApplicationObject  initializes a new instance
of the xPCSignals class.

Methods

Method Description

xPCSignals.GetSignals List of xPCSignal objects specified by array of signal identifiers
xPCSignals.-

GetSignalsValue

Vector of signal values from array

xPCSignals.Refresh Refresh state of object

Properties

Property C# Declaration Syntax Description Exception

NumSignalspublic int NumSignals

{get;}

Get total numbers of
signals available in real-
time application.

 

3-135



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Property C# Declaration Syntax Description Exception

this public xPCSignal

Item[int signalIdx]

{get;}

public xPCSignal

Item[string blkPath]

{get;}

Return reference to
xPCSignal object specified
by its signal identifier
(signalIdx) or signal
name (blkPath).

signalIdx is a 32–bit
integer that identifies the
signal.

blkPath is a character
string that specifies the
block path name for the
signal.

xPCException — When
problem occurs, query
xPCException object Reason
property.

ArgumentNullException

— signalIdx or blkPath
is NULL reference.

Introduced in R2011b

3-136



 xPCStateLogger Class

xPCStateLogger Class
Access to state log

Syntax

public class xPCStateLogger : xPCLog

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCStateLogger : xPCLog  initializes a new instance of the
xPCStateLogger class.

Properties

The xPCStateLogger class inherits its other properties from xPCLog Class.

Property C# Declaration Syntax Description

DataLogging-

Objects

public

IList<xPCDataLoggingObject>

DataLoggingObjects {get;}

Get collection of
xPCDataLoggingObject items
available for state logging.

IsEnabled public override bool

IsEnabled {get;}

Get whether to enable or disable
logging.

Overrides xPCLog.IsEnabled.
Item public xPCDataLoggingObject

Item[int index] {get;}

Get reference to the
xPCLoggingObject that corresponds
to index (state index). index is a
32–bit integer.

NumStates public int NumStates {get;} Get the number of states.

3-137



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Introduced in R2011b

3-138



 xPCTargetPC Class

xPCTargetPC Class

Access target computer

Syntax

public xPCTargetPC()

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCTargetPC() initializes a new instance of the xPCTargetPC class.

Note: RS-232 communication type has been removed. Configure TCP/IP communication
instead.

Constructor

Constructor Description

xPCTargetPC Construct xPCTargetPC object.

Methods

Method Description

xPCTargetPC.Connect Establish connection to target computer
xPCTargetPC.-

ConnectAsync

Asynchronous request for target computer connection

xPCTargetPC.Disconnect Disconnect from target computer

3-139



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Method Description

xPCTargetPC.-

DisconnectAsync

Asynchronous request to disconnect from target computer

xPCTargetPC.Dispose Clean up used resources
xPCTargetPC.Load Load real-time application onto target computer
xPCTargetPC.LoadAsync Asynchronous request to load real-time application onto target

computer
xPCTargetPC.Ping Test communication between development and target computers
xPCTargetPC.Reboot Restart target computer
xPCTargetPC.-

RebootAsync

Asynchronous request to restart target computer

xPCTargetPC.tcpPing Determine TCP/IP accessibility of remote computer
xPCTargetPC.Unload Unload real-time application from target computer
xPCTargetPC.-

UnloadAsync

Asynchronous request to unload real-time application from target
computer

Events

Event Description

xPCTargetPC.-

ConnectCompleted

Event when xPCTargetPC.ConnectAsync is complete

xPCTargetPC.Connected Event after xPCTargetPC.Connect is complete
xPCTargetPC.Connecting Event before xPCTargetPC.Connect starts
xPCTargetPC.-

DisconnectCompleted

Event when xPCTargetPC.DisconnectAsync is complete

xPCTargetPC.-

Disconnected

Event after xPCTargetPC.Disconnect is complete

xPCTargetPC.-

Disconnecting

Event before xPCTargetPC.Disconnect starts

xPCTargetPC.Disposed Event after xPCTargetPC.Dispose is complete
xPCTargetPC.-

LoadCompleted

Event when xPCTargetPC.LoadAsync is complete

3-140



 xPCTargetPC Class

Event Description

xPCTargetPC.Loaded Event after xPCTargetPC.Load is complete
xPCTargetPC.Loading Event before xPCTargetPC.Load starts
xPCTargetPC.-

RebootCompleted

Event when xPCTargetPC.RebootAsync is complete

xPCTargetPC.Rebooted Event after xPCTargetPC.Reboot is complete
xPCTargetPC.Rebooting Event before xPCTargetPC.Reboot starts
xPCTargetPC.-

UnloadCompleted

Event when xPCTargetPC.UnloadAsync is complete

xPCTargetPC.Unloaded Event after xPCTargetPC.Unload is complete
xPCTargetPC.Unloading Event before xPCTargetPC.Unload starts

Properties

Property C# Declaration Syntax Description Exception

AppFileName public string

AppFileName {get;

set;}

Get or set the full path
name to the real-time
application, without file
extension.

 

Application public

xPCApplication

Application {get;}

Get reference to an
xPCApplication object
that you can use to
interface with the real-
time application. If
no communication is
established, the property
returns a NULL object.

 

Communication-

TimeOut

public int

CommunicationTimeOut

{get; set;}

Get or set the
communication timeout
in seconds.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Component public IComponent

Component {get;}

Get component associated
with the ISite when
implemented by a class.

 

3-141



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Property C# Declaration Syntax Description Exception

Container public IContainer

Container {get;}

Get the IContainer
associated with the ISite
when implemented by a
class.

 

Container-

Control

public

ContainerControl

ContainerControl

{get; set;}

Provide focus-
management
functionality for controls
that can function as
containers for other
controls.

 

DLMFileName public string

DLMFileName {get;

set;}

Get or set the full path to
the DLM file name.

Note: AppFileName has
superseded this property.

 

Echo public bool Echo

{get; set;}

Get or set the target
display on the target
computer.

xPCException — When
problem occurs, query
xPCException object
Reason property.

FileSystem public

xPCFileSystem

FileSystem {get;}

Get a reference to
an xPCFileSystem
object that you can use
to interface with the
target file system. If
no communication is
established, the property
returns a NULL object.

 

3-142



 xPCTargetPC Class

Property C# Declaration Syntax Description Exception

HostTarget-

Comm

public XPCProtocol

HostTargetComm

{get; set;}

Get or set the
physical medium for
communication. See
xPCProtocol Enumerated
Data Type.

Setting HostTarget-
Comm to RS232 has no
effect. Value remains set
to TCPIP.

 

IsConnected public bool

IsConnected {get;}

Get connection status
(established or not) to a
remote target computer.

 

IsConnecting-

Busy

public bool

IsConnectingBusy

{get;}

Get ConnectAsync
request status (in
progress or not).

 

IsDiscon-

nectingBusy

public bool

IsDisconnectingBusy

{get;}

Get whether a
DisconnectAsync

request is in progress.

 

IsLoadingBusy public bool

IsLoadingBusy

{get;}

Gets LoadAsync request
status (in progress or
not).

 

IsRebooting-

Busy

public bool

IsRebootingBusy

{get;}

Get RebootAsync
request status (in
progress or not).

 

IsUnloading-

Busy

public bool

IsUnloadingBusy

{get;}

Gets unLoadingAsync
request status (in
progress or not).

 

SessionTime public double

SessionTime {get;}

Get the length of time
Simulink Real-Time
kernel has been running
on the target computer.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Site public ISite Site

{get; set;}

Get or set site of the
control.

 

3-143



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Property C# Declaration Syntax Description Exception

TargetPCName public string

TargetPCName {get;

set;}

Get or set a value
indicating the target
computer name
associated with the target
computer.

 

TcpIpTarget-

Address

public string

TcpIpTargetAddress

{get; set;}

Get or set a valid IP
address for your target
computer.

 

TcpIpTarget-

Port

public string

TcpIpTargetPort

{get; set;}

Get or set the TCP/IP
target port. The default
is 22222. This number is
higher than the reserved
area (for example, the
port numbers reserved
for telnet or ftp).
The software uses this
value only for the target
computer.

 

Introduced in R2011b

3-144



 xPCTargetScope Class

xPCTargetScope Class
Access to target scopes

Syntax

public class xPCTargetScope : xPCScope

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTargetScope : xPCScope initializes a new instance of the
xPCTargetScope class.

Methods

The xPCTargetScope class inherits methods from xPCScope Class.

Events

The xPCTargetScope class inherits events from xPCScope Class.

Properties

The xPCTargetScope class inherits its other properties from xPCScope Class.

Property C# Declaration Syntax Description Exception

Display-

Mode

public SCDISPLAYMODE

DisplayMode {get;

set;}

Get or set scope mode for
displaying signals.

xPCException — When
problem occurs, query
xPCException object
Reason property.

3-145



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Property C# Declaration Syntax Description Exception

Grid public bool Grid

{get; set;}

Get or set status of grid line
for particular scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Signals public

xPCTargetScope-

SignalCollection

Signals {get;}

Get the collection of target
scope signals xPCTarget-
ScopeSignalCollection that
you assign to this scope
object.

 

Trigger-

Signal

public

xPCTgtScopeSignal

TriggerSignal {get;

set;}

Get or set target scope
signal xPCTgtScopeSignal
used to trigger the scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

YLimit public double[]

YLimit {get; set;}

Get or set y-axis minimum
and maximum limits for
scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Introduced in R2011b

3-146



 xPCTargetScopeCollection Class

xPCTargetScopeCollection Class
Collection of xPCTargetScope objects

Syntax

public class xPCTargetScopeCollection :

xPCScopeCollection<xPCTargetScope>

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTargetScopeCollection :

xPCScopeCollection<xPCTargetScope>  initializes collection of xPCTargetScope
objects.

Methods

Method Description

xPCTargetScope-

Collection.Add

Create xPCTargetScope object with the next available scope ID as
key

xPCTargetScope-

Collection.Refresh

Refresh target scope object state

xPCTargetScope-

Collection.StartAll

Start all target scopes in one call

xPCTargetScope-

Collection.StopAll

Stop all target scopes in one call

Introduced in R2011b

3-147



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetScopeSignalCollection Class
Collection of xPCHostScopeSignal objects

Syntax

public class xPCTargetScopeSignalCollection :

xPCScopeSignalCollection

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTargetScopeSignalCollection :

xPCScopeSignalCollection.

Methods

Method Description

xPCTargetScope-

SignalCollection.Add

Create xPCTargetScopeSignal object

xPCTargetScope-

SignalCollection.-

Refresh

Synchronize signals for associated target scopes on target computer

Properties

Property C# Declaration Syntax Description Exception

Item public

xPCTgtScopeSignal

Get xPCTgtScopeSignal
object from signal name
(blkpath).

xPCException — When
problem occurs, query

3-148



 xPCTargetScopeSignalCollection Class

Property C# Declaration Syntax Description Exception

Item[string blkpath]

{get;}

blkpath is the signal
name that represents a
signal object added to its
parent xPCTargetScope
object.

This property returns the
file scope signal object as
type xPCTgtScopeSignal.

xPCException object
Reason property.

Introduced in R2011b

3-149



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTETLogger Class
Access to task execution time (TET) logger

Syntax

public class xPCTETLogger : xPCLog

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTETLogger : xPCLog initializes a new instance of the
xPCTETLogger class.

Properties

The xPCTETLogger class inherits its other properties from xPCLog Class.

Properties C# Declaration Syntax Description

DataLogObject public

xPCDataLoggingObject

DataLogObject {get;}

Get TET data logging object.

IsEnabled public override bool

IsEnabled {get;}

Get whether to enable or disable
logging.

Overrides xPCLog.IsEnabled.

Introduced in R2011b

3-150



 xPCTgtScopeSignal Class

xPCTgtScopeSignal Class
Access to target scope signals

Syntax

public class xPCTgtScopeSignal : xPCScopeSignal

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTgtScopeSignal : xPCScopeSignal  initializes access to target
scope signals.

Properties

Property C# Declaration Syntax Description Exception

Numerical

Format

public string

NumericalFormat

{get; set;}

Get and set numerical
format for the numeric
displayed signal
associated with this
object.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Scope public

xPCTargetScope Scope

{get;}

Get parent target scope
xPCTargetScope object.

 

Introduced in R2011b

3-151



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTimeLogger Class
Access to output log

Syntax

public class xPCTimeLogger : xPCLog

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTimeLogger : xPCLog initializes a new instance of the
xPCTimeLogger class.

Properties

The xPCTimeLogger class inherits its other properties from xPCLog Class.

Properties C# Declaration Syntax Description

DataLogObjects public

xPCDataLoggingObject

DataLogObject {get;}

Get the xPCDataLoggingObject
of the time log.

IsEnabled public override bool

IsEnabled {get;}

Get whether to enable or disable
logging.

Overrides xPCLog.IsEnabled.

Introduced in R2011b

3-152



 xPCFileInfo.Open

xPCFileInfo.Open
Open file

Syntax

public xPCFileStream Open(xPCFileMode fileMode)

Description

Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileStream Open(xPCFileMode fileMode) opens file with specified
mode. This method returns the xPCFileStream object for the file. See xPCFileMode
Enumerated Data Type for file mode options.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-153



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileInfo.OpenRead
Create read-only xPCFileStream object

Syntax

public xPCFileStream OpenRead()

Description

Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileStream OpenRead() creates a read-only xPCFileStream object. This
method returns the xPCFileStream object for the file.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-154



 xPCTargetPC.Ping

xPCTargetPC.Ping
Test communication between development and target computers

Syntax

public bool Ping()

public string Ping('info')

public string Ping('reset')

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public bool Ping() tests at a low level the connection between the development
and target computers. This method returns a Boolean value. If a data channel is open
between the development and target computers, Ping() leaves it open.

public string Ping('info') returns human-readable information about the
connection between the development and target computers. If a data channel is open
between the development and target computers, Ping('info') leaves it open.

If the target computer is connected, Ping('info') uses the information/control channel
to return a string of the form:

'xPCTargetversion hex_address Connected'

In this string:

• version — Version of the Simulink Real-Time kernel that is running on the target
computer. For example, the function returns xPCTarget6.6 for kernel version 6.6.

• hex_address — Hexadecimal representation of the development computer
network address to which the target computer is connected. The hexadecimal digits

3-155



3 Simulink Real-Time API Reference for Microsoft .NET Framework

are reversed from the digits of the network address. For example, 0x640a0a0a
represents the network address 10.10.10.100.

When the target computer is not connected to a development computer, hex_address
is a random hexadecimal number.

If the target computer is not connected to a development computer, Ping('info')
returns a string of the form:

'xPCTargetversion hex_address Disconnected'

public string Ping('reset') uses the information/control channel to close an open
communication channel between the development and target computers and returns a
string of the form:

'xPCTargetversion hex_address Disconnected'

Introduced in R2011b

3-156



 xPCFileStream.Read

xPCFileStream.Read
Read block of bytes from stream and write data to buffer

Syntax

public long Read(byte[] buffer, long offset, long count)

Description

Class: xPCFileStream Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public long Read(byte[] buffer, long offset, long count) reads a block
of bytes from the file stream. It then writes the data to the specified buffer, buffer.
buffer specifies the size in bytes and is a byte structure (8-bit unsigned integer). When
this method returns, it contains the byte array with the values between offset and
(offset + count - 1), replaced by the bytes read from the current source. offset
is an integer. It specifies the byte offset in the array at which the method places the read
bytes. count is an integer. It specifies the number of bytes to read from the stream.
This method returns the total number of bytes the method reads into the buffer. If the
requested number of bytes are not currently available, count is less than the number of
bytes requested. If the method reaches the end of the stream, it can also be zero.

The largest single file that you can create on the target computer is 4 GB.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

3-157



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Introduced in R2011b

3-158



 xPCTargetPC.Reboot

xPCTargetPC.Reboot
Restart target computer

Syntax

public void Reboot()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Reboot() restarts the target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-159



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.RebootAsync
Asynchronous request to restart target computer

Syntax

public void RebootAsync()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void RebootAsync() begins an asynchronous request to restart a target
computer.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method

Introduced in R2011b

3-160



 xPCTargetPC.RebootCompleted

xPCTargetPC.RebootCompleted
Event when xPCTargetPC.RebootAsync is complete

Syntax

public event RebootCompletedEventHandler RebootCompleted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event RebootCompletedEventHandler RebootCompleted occurs when an
asynchronous restart operation is complete.

Introduced in R2011b

3-161



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.Rebooted
Event after xPCTargetPC.Reboot is complete

Syntax

public event EventHandler Rebooted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Rebooted occurs after a target computer restart is
complete.

Introduced in R2011b

3-162



 xPCTargetPC.Rebooting

xPCTargetPC.Rebooting
Event before xPCTargetPC.Reboot starts

Syntax

public event EventHandler Rebooting

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Rebooting occurs before a restart operation executes.

Introduced in R2011b

3-163



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileScopeCollection.Refresh
Synchronize with file scopes on target computer

Syntax

public override void Refresh()

Description

Class: xPCFileScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() synchronizes with file scopes on target computer.

Overrides xPCScopeCollection<xPCFileScope>.Refresh().

Introduced in R2011b

3-164



 xPCScopes.RefreshAll

xPCScopes.RefreshAll
Refresh state of object

Syntax

public void RefreshAll()

Description

Class: xPCScopes Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void RefreshAll() refreshes state of object.

Introduced in R2011b

3-165



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDriveInfo.Refresh
Synchronize with file drives on target computer

Syntax

public void Refresh()

Description

Class: xPCDriveInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Refresh() synchronizes with file drives on target computer.

Introduced in R2011b

3-166



 xPCFileScopeSignalCollection.Refresh

xPCFileScopeSignalCollection.Refresh
Synchronize with signals for associated scope on target computer

Syntax

public override void Refresh()

Description

Class: xPCFileScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() synchronizes with signals for associated file
scopes on target computer.

Overrides xPCScopeCollection<xPCFileScopeSignal>.Refresh().

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-167



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCHostScopeCollection.Refresh
Refresh host scope object state

Syntax

public override void Refresh()

Description

Class: xPCHostScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() refreshes host scope object state.

Overrides xPCScopeCollection<xPCHostScope>.Refresh().

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-168



 xPCHostScopeSignalCollection.Refresh

xPCHostScopeSignalCollection.Refresh
Synchronize signals for associated host scopes on target computer

Syntax

public override void Refresh()

Description

Class: xPCHostScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh()  synchronizes signals for associated host scopes
on target computer.

Overrides xPCScopeCollection<xPCHostScope>.Refresh().

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-169



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCParameters.Refresh
Refresh state of object

Syntax

public override void Refresh()

Description

Class: xPCParameters Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh()  refreshes the state of the object.

Introduced in R2011b

3-170



 xPCSignals.Refresh

xPCSignals.Refresh
Refresh state of object

Syntax

public void Refresh()

Description

Class: xPCSignals Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Refresh() refreshes the state of the object.

Introduced in R2011b

3-171



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetScopeCollection.Refresh
Refresh target scope object state

Syntax

public override void Refresh()

Description

Class: xPCTargetScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() refreshes target scope object state.

Overrides xPCScopeCollection<xPCTargetScope>.Refresh().

Introduced in R2011b

3-172



 xPCTargetScopeSignalCollection.Refresh

xPCTargetScopeSignalCollection.Refresh
Synchronize signals for associated target scopes on target computer

Syntax

public override void Refresh()

Description

Class: xPCTargetScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() synchronizes signals for associated target scopes
on target computer.

Overrides xPCScopeSignalCollection<xPCTgtScopeSignal>.Refresh().

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-173



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileSystem.RemoveFile
Remove file name from target computer

Syntax

public void RemoveFile(string fileName)

Description

Class: xPCFileSystem Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void RemoveFile(string fileName) removes the specified file name from
the target computer. fileName is a character string that specifies the full path name to
the file you want to remove.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-174



 xPCFileInfo.Rename

xPCFileInfo.Rename
Rename file

Syntax

public xPCFileInfo Rename(string newName)

Description

Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileInfo Rename(string newName) changes file name to newName.
newName is a character string. This method returns the xPCFileInfo object.

A fully qualified file name can have a maximum of 260 characters: The file part can have
at most 12 characters: eight for the file name, one for the period, and at most three for
the file extension. A file name longer than eight characters is truncated to six characters
followed by '~1'.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-175



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCParameters.SaveParameterSet
Save parameter values of real-time application

Syntax

public void SaveParameterSet(string fileName)

Description

Class: xPCParameters Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void SaveParameterSet(string fileName) saves parameter values of the
real-time application in a file. fileName is a character string that represents the file to
contain the saved parameter values.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-176



 SCDISPLAYMODE Enumerated Data Type

SCDISPLAYMODE Enumerated Data Type
Target scope display mode values

Syntax

public enum SCDISPLAYMODE

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCDISPLAYMODE specifies target scope display mode values.

Members

Member Description

NUMERICAL Specifies target scope drawing mode to display numerical value.
REDRAW Specifies target scope drawing mode to redraw mode.
ROLLING Specifies target scope drawing mode to rolling mode.
SLIDING The value SLIDING will be removed in a future release. It behaves like

value ROLLING.

Introduced in R2009b

3-177



3 Simulink Real-Time API Reference for Microsoft .NET Framework

SCFILEMODE Enumerated Data Type
Write mode values for when file allocation table entry is updated

Syntax

public enum SCFILEMODE

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCFILEMODE specifies write mode values for when file allocation table
entry is updated.

Members

Member Description

LAZY Enables lazy write mode.
COMMIT Enables commit write mode.

Introduced in R2009b

3-178



 xPCScope.ScopeStarted

xPCScope.ScopeStarted
Event after xPCScope.Start is complete

Syntax

public event EventHandler ScopeStarted

Description

Class: xPCScope Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler ScopeStarted occurs after a scope start command is
complete.

Introduced in R2011b

3-179



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCScope.ScopeStarting
Event before xPCScope.Start executes

Syntax

public event EventHandler ScopeStarting

Description

Class: xPCScope Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler ScopeStarting occurs before a scope executes.

Introduced in R2011b

3-180



 xPCScope.ScopeStopped

xPCScope.ScopeStopped
Event after xPCScope.Stop is complete

Syntax

public event EventHandler ScopeStarting

Description

Class: xPCScope Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler ScopeStarting occurs after a scope completes a
manual stop command.

Introduced in R2011b

3-181



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCScope.ScopeStopping
Event before xPCScope.Stop executes

Syntax

public event EventHandler ScopeStopping

Description

Class: xPCScope Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler ScopeStopping occurs before a scope completes a
manual stop.

Introduced in R2011b

3-182



 SCSTATUS Enumerated Data Type

SCSTATUS Enumerated Data Type
Scope status values

Syntax

public enum SCSTATUS

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCSTATUS specifies scope status values.

Members

Member Description

WAITTOSTART Scope is ready and waiting to start.
WAITFORTRIG Scope is finished with the preacquiring state and waiting for a trigger.

If the scope does not preacquire data, it enters the wait for trigger
state.

ACQUIRING Scope is acquiring data. The scope enters this state when it leaves the
wait for trigger state.

FINISHED Scope is finished acquiring data when it has attained the predefined
limit.

INTERRUPTED You have stopped (interrupted) the scope.
PREACQUIRING Scope acquires a predefined number of samples before triggering.

Introduced in R2009b

3-183



3 Simulink Real-Time API Reference for Microsoft .NET Framework

SCTRIGGERMODE Enumerated Data Type
Scope trigger mode values

Syntax

public enum SCTRIGGERMODE

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCTRIGGERMODE specifies scope trigger mode values.

Members

Member Description

FREERUN There is no external trigger condition. The scope triggers when it is
ready to trigger, regardless of the circumstances.

SOFTWARE Only user intervention can trigger the scope, and it can do so
regardless of circumstances. No other triggering is possible.

SIGNAL Signal must cross a value before the scope is triggered.
SCOPE Another scope triggers this scope at a predefined trigger point of

the triggering scope. You modify this trigger point with the value of
TriggerScopeSample.

Introduced in R2009b

3-184



 SCTRIGGERSLOPE Enumerated Data Type

SCTRIGGERSLOPE Enumerated Data Type
Scope trigger slope values

Syntax

public enum SCTRIGGERSLOPE

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCTRIGGERSLOPE specifies scope trigger slope values.

Members

Member Description

EITHER The trigger slope can be rising or falling.
RISING The trigger signal value must be rising when it crosses the trigger

value.
FALLING The trigger signal value must be falling when it crosses the trigger

value.

Introduced in R2009b

3-185



3 Simulink Real-Time API Reference for Microsoft .NET Framework

SCTYPE Enumerated Data Type
Scope type

Syntax

public enum SCTYPE

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCTYPE specifies scope type.

Members

Member Description

HOST Specifies scope as type host.
TARGET Specifies scope as type target.
FILE Specifies scope as type file.

Introduced in R2009b

3-186



 xPCFileSystem.SetCurrentDirectory

xPCFileSystem.SetCurrentDirectory
Current folder

Syntax

public void SetCurrentDirectory(string path)

Description

Class: xPCFileSystem Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void SetCurrentDirectory(string path) sets the current folder to the
specified path name on the target computer. path is a character string that specifies the
full path name to the folder you want to make current.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-187



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCParameter.SetParam
Change value of parameter on target computer

Syntax

public void SetParam(double[] values)

Description

Class: xPCParameter Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void SetParam(double[] values) sets the parameter to values.
Parameter values is a vector of doubles, assumed to be the size required by the
parameter type.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-188



 xPCParameter.SetParamAsync

xPCParameter.SetParamAsync
Asynchronous request to change parameter value on target computer

Syntax

public void SetParamAsync(double[] values)

public void SetParamAsync(double[] values, Object taskId)

Description

Class: xPCParameter Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void SetParamAsync(double[] values) begins an asynchronous request
to set parameter values to values on the target computer. This method does not block
the calling thread. values is a vector of double values to which to set the parameter
values.

public void SetParamAsync(double[] values, Object taskId) receives a
user-defined object when it completes its asynchronous request. values is a vector of
double values to which to set the parameter values. taskId is a user-defined object that
you can have passed to the SetParamAsync method upon completion.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method

Introduced in R2011b

3-189



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCParameter.SetParamCompleted
Event when xPCParameter.SetParamAsync is complete

Description

Class: xPCParameter Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event SetParamCompletedEventHandler SetParamCompleted  occurs
when an asynchronous set parameter operation is complete.

Introduced in R2011b

3-190



 xPCApplication.Start

xPCApplication.Start
Start real-time application execution

Syntax

public void Start()

Description

Class: xPCApplication Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Start() starts the real-time application simulation.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-191



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileScopeCollection.StartAll
Start all file scopes in one call

Syntax

public void StartAll()

Description

Class: xPCFileScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StartAll() sequentially starts all file scopes using one call. This
method starts all of the file scopes in the xPCFileScopeCollection.

Introduced in R2011b

3-192



 xPCHostScopeCollection.StartAll

xPCHostScopeCollection.StartAll
Start all host scopes in one call

Syntax

public void StartAll()

Description

Class: xPCHostScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StartAll() sequentially starts all host scopes using one call. This
method starts all the host scopes in the xPCHostScopeCollection.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-193



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetScopeCollection.StartAll
Start all target scopes in one call

Syntax

public void StartAll()

Description

Class: xPCTargetScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StartAll() sequentially starts all target scopes using one call. This
method starts all the target scopes in the xPCTargetScopeCollection.

Introduced in R2011b

3-194



 xPCScope.Start

xPCScope.Start
Start scope

Syntax

public void Start()

Description

Class: xPCScope Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Start() starts execution of scope on target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-195



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCApplication.Started
Event after xPCApplication.Start is complete

Syntax

public event EventHandler Started

Description

Class: xPCApplication Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Started occurs after a real-time application start
command is complete.

Introduced in R2011b

3-196



 xPCApplication.Starting

xPCApplication.Starting
Event before xPCApplication.Start executes

Syntax

public event EventHandler Starting

Description

Class: xPCApplication Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Starting occurs before a real-time application start
command executes.

Introduced in R2011b

3-197



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCApplication.Stop
Stop real-time application execution

Syntax

public void Stop()

Description

Class: xPCApplication Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Stop() stops the real-time application simulation.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-198



 xPCFileScopeCollection.StopAll

xPCFileScopeCollection.StopAll
Stop all file scopes in one call

Syntax

public void StopAll()

Description

Class: xPCFileScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StopAll() stops all file scopes using one call. This method stops allof
the file scopes in the xPCFileScopeCollection.

Introduced in R2011b

3-199



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCHostScopeCollection.StopAll
Stop all host scopes in one call

Syntax

public void StopAll()

Description

Class: xPCHostScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StopAll() sequentially stops all host scopes using one call. This method
stops all the host scopes in the xPCHostScopeCollection.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-200



 xPCTargetScopeCollection.StopAll

xPCTargetScopeCollection.StopAll
Stop all target scopes in one call

Syntax

public void StopAll()

Description

Class: xPCTargetScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StopAll() sequentially stops all target scopes using one call. This
method stops all the target scopes in the xPCTargetScopeCollection.

Introduced in R2011b

3-201



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCScope.Stop
Stop scope

Syntax

public void Stop()

Description

Class: xPCScope Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Stop() stops execution of scope on target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-202



 xPCApplication.Stopped

xPCApplication.Stopped
Event after xPCApplication.Stop is complete

Syntax

public event EventHandler Stopped

Description

Class: xPCApplication Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Stopped occurs after a real-time application stop
command is complete.

Introduced in R2011b

3-203



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCApplication.Stopping
Event before xPCApplication.Stop executes

Syntax

public event EventHandler Stopping

Description

Class: xPCApplication Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Stopping occurs before a real-time application stop
command executes.

Introduced in R2011b

3-204



 xPCTargetPC.tcpPing

xPCTargetPC.tcpPing
Determine TCP/IP accessibility of remote computer

Syntax

public bool tcpPing()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public bool tcpPing() allows a real-time application to determine whether a remote
computer is accessible on the TCP/IP network. This method returns a Boolean value. If a
data channel is open between the development and target computers, this method leaves
it open.

Introduced in R2011b

3-205



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCScope.Trigger
Software-trigger start of data acquisition for scope

Syntax

public void Trigger()

Description

Class: xPCScope Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Trigger() software-triggers start of data acquisition for current scope.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-206



 xPCSignal.TryGetValue

xPCSignal.TryGetValue
Status of get signal value at moment of request

Syntax

public virtual bool TryGetValue(ref double result)

Description

Class: xPCSignal Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public virtual bool TryGetValue(ref double result) returns the status
of get signal value at moment of request. If the software detects an error, this method
returns false. Otherwise, the method returns true.

Introduced in R2011b

3-207



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.Unload
Unload real-time application from target computer

Syntax

public void Unload()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Unload() unloads a real-time application from a target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-208



 xPCTargetPC.UnloadAsync

xPCTargetPC.UnloadAsync
Asynchronous request to unload real-time application from target computer

Syntax

public void UnloadAsync()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void UnloadAsync() begins an asynchronous request to unload a real-time
application from a target computer.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method

Introduced in R2011b

3-209



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.UnloadCompleted
Event when xPCTargetPC.UnloadAsync is complete

Syntax

public event UnloadCompletedEventHandler UnloadCompleted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event UnloadCompletedEventHandler UnloadCompleted occurs when an
asynchronous real-time application unload operation is complete.

Introduced in R2011b

3-210



 xPCTargetPC.Unloaded

xPCTargetPC.Unloaded
Event after xPCTargetPC.Unload is complete

Syntax

public event EventHandler Unloaded

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Unloaded occurs after a real-time application unload
from the target computer is complete.

Introduced in R2011b

3-211



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC.Unloading
Event before xPCTargetPC.Unload starts

Syntax

public event EventHandler Unloading

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Unloading occurs before a real-time application starts
to unload from a target computer.

Introduced in R2011b

3-212



 xPCFileStream.Write

xPCFileStream.Write
Write block of bytes to file stream

Syntax

public void Write(byte[] buffer, int count)

Description

Class: xPCFileStream Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Write(byte[] buffer, int count) writes data from a block of
bytes, buffer, to the current file stream. buffer contains the data to write to the
stream. It is a byte structure. count is an integer. It specifies the number of bytes to
write to the current file stream.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-213



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileStream.WriteByte
Write byte to current position in file stream

Syntax

public void WriteByte(byte value)

Description

Class: xPCFileStream Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void WriteByte(byte value) writes a byte to the current position in the
file stream. value contains the byte of data that the method writes to the file stream.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2011b

3-214



 xPCAppStatus Enumerated Data Type

xPCAppStatus Enumerated Data Type
Real-time application status return values

Syntax

public enum xPCAppStatus

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum xPCAppStatus specifies real-time application status return values.

Members

Member Description

Stopped Real-time application is stopped.
Starting Real-time application is starting.
Running Real-time application is running.

Introduced in R2009b

3-215



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCDirectoryInfo
Construct new instance of xPCDirectoryInfo class on specified path

Syntax

public xPCDirectoryInfo(xPCTargetPC tgt, string path)

Description

Class: xPCDirectoryInfo Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCDirectoryInfo(xPCTargetPC tgt, string path) initializes a new
instance of the xPCDirectoryInfo class on the path, path. tgt is an xPCTargetPC object
that represents the target computer for which you initialize the class. path is a character
string that represents the path on which to create the xPCDirectoryInfo object.

A fully qualified folder name can have a maximum of 248 characters, including the drive
letter, colon, and backslash.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2009b

3-216



 xPCDriveInfo

xPCDriveInfo
Construct new instance of xPCDriveInfo class

Syntax

public xPCDriveInfo(xPCTargetPC tgt, string driveName)

Description

Class: xPCDriveInfo Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCDriveInfo(xPCTargetPC tgt, string driveName) initializes a new
instance of the xPCDriveInfo class. tgt is an xPCTargetPC object that represents the
target computer for which you want to the return drive information. driveName is a
character string that represents the name of the drive.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2009b

3-217



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCException
Construct new instance of xPCException class

Syntax

public xPCException()

public xPCException(string message)

public xPCException(string message, Exception inner)

public xPCException(SerializationInfo info, StreamingContext

context)

public xPCException(int errId, string message, xPCTargetPC tgt)

Description

Class: xPCException Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCException() initializes a new instance of the xPCException class.

public xPCException(string message) initializes a new instance of the
xPCException class with message. message is a character string that contains the text
of the error message.

public xPCException(string message, Exception inner) initializes a new
instance of the xPCException class with message and inner. message is a character
string. inner is a nested Exception object.

public xPCException(SerializationInfo info, StreamingContext

context) initializes a new instance of the xPCException class with serialization
information, info, and streaming context, context. info is a SerializationInfo object.
context is a StreamingContext object.

3-218



 xPCException

public xPCException(int errId, string message, xPCTargetPC tgt)

initializes a new instance of the xPCException class. errID is a 32–bit integer that
contains the error ID numbers as defined in matlabroot\toolbox\rtw\targets
\xpc\api\xpcapiconst.h. message is an error message character string. tgt is the
xPCTargetPC object that raised the error.

Introduced in R2009b

3-219



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCExceptionReason Enumerated Data Type
Exception reasons

Syntax

public enum xPCExceptionReason

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum xPCExceptionReason specifies the reasons for an exception. See “C API
Error Messages” on page 1-8 for definitions.

Introduced in R2009b

3-220



 xPCFileInfo

xPCFileInfo
Construct new instance of xPCFileInfo class

Syntax

public xPCFileInfo(xPCTargetPC tgt, string fileName)

Description

Class: xPCFileInfo Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileInfo(xPCTargetPC tgt, string fileName) initializes a new
instance of the xPCFileInfo class. tgt is an xPCTargetPC object that represents the
target computer for which you want to return the file information. fileName is a
character string that represents the name of the file. It is a fully qualified name of the
new file, or the relative file name in the target computer file system.

There are the following limitations:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

3-221



3 Simulink Real-Time API Reference for Microsoft .NET Framework

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2009b

3-222



 xPCFileMode Enumerated Data Type

xPCFileMode Enumerated Data Type
Open file with permissions

Syntax

public enum xPCFileMode

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum xPCFileMode specifies how the target computer is to open a file with
permissions.

Members

Member Description

CreateWrite Open file for writing and discard existing contents.
CreateReadWrite Open or create file for reading and writing and discard existing

contents
OpenRead Open file for reading
OpenReadWrite Open (but do not create) file for reading and writing
AppendWrite Open or create file for writing and append data to end of file
AppendReadWrite Open or create file for reading and writing and append data to end of

file

Introduced in R2009b

3-223



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileStream
Construct new instance of xPCFileStream class

Syntax

public xPCFileStream(xPCTargetPC tgt, string path, xPCFileMode

fmode)

Description

Class: xPCFileStream Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileStream(xPCTargetPC tgt, string path, xPCFileMode

fmode) initializes a new instance of the xPCFileStream class with the path name
and creation mode. tgt is a reference to an xPCTargetPC object. path is a relative or
absolute path name for the file that the current xPCFileStream object encapsulates.
fmode is an xPCFileMode constant that determines how to open or create the file. See
xPCFileMode Enumerated Data Type for file mode options.

There are the following limitations:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

3-224



 xPCFileStream

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

Introduced in R2009b

3-225



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCFileSystemInfo
Construct new instance of xPCFileSystemInfo class

Syntax

public xPCFileSystemInfo(xPCTargetPC tgt)

Description

Class: xPCFileSystemInfo Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileSystemInfo(xPCTargetPC tgt) initializes a new instance of the
xPCFileSystemInfo class. tgt is an xPCTargetPC object that represents the target
computer for which you want the file system information.

Introduced in R2009b

3-226



 xPCLogMode Enumerated Data Type

xPCLogMode Enumerated Data Type
Specify log mode values

Syntax

public enum xPCLogMode

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum xPCLogMode specifies log mode values.

Members

Member Description

Normal Time-equidistant logging to log data point at every time interval.
Value Log data point only when output signal from OutputLog increments by

a specified value

Introduced in R2009b

3-227



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCLogType Enumerated Data Type
Logging type values

Syntax

public enum xPCLogType

Description

Namespace: MathWorks.xPCTarget.FrameWork

Enumerated Data Type

Syntax Language: C#

public enum xPCLogType specifies logging type values.

Members

Member Description

OUTPUTLOG Output log
STATELOG State log
TIMELOG Time log
TETLOG TET log

Introduced in R2009b

3-228



 xPCProtocol Enumerated Data Type

xPCProtocol Enumerated Data Type
Development computer and target computer communication medium

Syntax

public enum XPCProtocol

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum XPCProtocol specifies development computer and target computer
communication medium.

Note: RS-232 communication type has been removed. Configure TCP/IP communication
instead.

Members

Member Description

TCPIP Ethernet link

Introduced in R2009b

3-229



3 Simulink Real-Time API Reference for Microsoft .NET Framework

xPCTargetPC
Construct new instance of xPCTargetPC class

Syntax

public xPCTargetPC()

Description

Class: xPCTargetPC Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCTargetPC() initializes a new instance of the xPCTargetPC class.

Introduced in R2009b

3-230



4

Simulink Real-Time API for C



4 Simulink Real-Time API for C

Using the C API

Keep the following guidelines in mind when you begin to write Simulink Real-Time C
API programs with the Simulink Real-Time C API DLL:

• Carefully match the function data types as documented in the function reference. For
C, the API includes a header file that matches the data types.

• You can call the API functions from non-C languages, such as C++ and Java. Refer to
the compiler documentation of the non-C language for a description of how to access
C functions from a library DLL. To access the Simulink Real-Time C API DLL, follow
these directions.

• You can work with real-time applications with either MATLAB or a Simulink Real-
Time C API control application. However, only one control application can access the
target computer at a time. To move from the MATLAB session to your application, in
the MATLAB Command Window, type:

close(slrt)

This command frees the connection to the target computer for use by your Simulink
Real-Time C API application. Conversely, to access the target from a MATLAB
session, you must quit your control application, or do the equivalent of calling the
function xPCClosePort.

• The Simulink Real-Time C API functions that communicate with the target
computer check for timeouts during communication. If the TCP/IP connection times
out, they exit with the global variable xPCError set to ETCPTIMEOUT. Use the
xPCGetLoadTimeOut and xPCSetLoadTimeOut functions to get and set the timeout
values, respectively.

A few things that are common to almost all the functions in the Simulink Real-Time C
API are not covered in the reference topics for the individual functions.

• Almost every function (except xPCOpenTcpIpPort, xPCGetLastError,
and xPCErrorMsg) has as one of its parameters the integer variable port.
xPCOpenTcpIpPort returns this variable to represent the communications link with
the target computer.

• Almost every function (except xPCGetLastError and xPCErrorMsg) sets a global
error value when an error occurs. The application obtains this value by calling the
function xPCGetLastError, and retrieves a descriptive character string about the
error by using the function xPCErrorMsg. The actual error values are subject to
change. However, a zero value typically means that the operation completed without

4-2



 Using the C API

producing an error, while a nonzero value typically signifies an error condition. The
library resets the error value every time an API function is called; therefore, check the
error status as soon as possible after a function call.

Some functions also use their return values (if applicable) to signify that an
error has occurred. In these cases as well, you can obtain the exact error with
xPCGetLastError.

4-3





5

Simulink Real-Time API Reference for
C



5 Simulink Real-Time API Reference for C

dirStruct

Type definition for file system folder information structure

Syntax

typedef struct {

   char Name[8];

   char Ext[3];

   int  Day;

   int  Month;

   int  Year;

   int  Hour;

   int  Min;

   int  isDir;

   unsigned long  Size;

} dirStruct; 

Fields

Name This value contains the name of the file or folder.

A fully qualified folder name can have a maximum of 248
characters, including the drive letter, colon, and backslash.

Ext This value contains the file type of the element, if the
element is a file (isDir is 0). If the element is a folder
(isDir is 1), this field is empty.

Day This value contains the day the file or folder was last
modified.

Month This value contains the month the file or folder was last
modified.

Year This value contains the year the file or folder was last
modified.

Hour This value contains the hour the file or folder was last
modified.

5-2



 dirStruct

Min This value contains the minute the file or folder was last
modified.

isDir This value indicates if the element is a file (0) or folder (1).
If it is a folder, Bytes has a value of 0.

Size This value contains the size of the file in bytes. If the
element is a folder, this value is 0.

Description

The dirStruct structure contains information for a folder in the file system.

See Also

See Also
xPCFSDirItems

Introduced in R2007a

5-3



5 Simulink Real-Time API Reference for C

diskinfo
Type definition for file system disk information structure

Syntax
typedef struct {

   char         Label[12];

   char         DriveLetter;

   char         Reserved[3];

   unsigned int SerialNumber;

   unsigned int FirstPhysicalSector;

   unsigned int FATType;

   unsigned int FATCount;

   unsigned int MaxDirEntries;

   unsigned int BytesPerSector;

   unsigned int SectorsPerCluster;

   unsigned int TotalClusters;

   unsigned int BadClusters;

   unsigned int FreeClusters;

   unsigned int Files;

   unsigned int FileChains;

   unsigned int FreeChains;

   unsigned int LargestFreeChain;

   unsigned int DriveType;

} diskinfo; 

Fields

Label This value contains the zero-terminated character string
that contains the volume label. The character string is
empty if the volume has no label.

DriveLetter This value contains the drive letter, in uppercase.
Reserved Reserved.
SerialNumber This value contains the volume serial number.
FirstPhysicalSector This value contains the logical block addressing (LBA)

address of the logical drive boot record. For 3.5-inch disks,
this value is 0.

5-4



 diskinfo

FATType This value contains the type of file system found. It can
contain 12, 16, or 32 for FAT-12, FAT-16, or FAT-32
volumes, respectively.

FATCount This value contains the number of FAT partitions on the
volume.

MaxDirEntries This value contains the size of the root folder. For FAT-32
systems, this value is 0.

BytesPerSector This value contains the sector size. This value is most
likely to be 512.

SectorsPerCluster This value contains, in sectors, the size of the smallest unit
of storage that can be allocated to a file.

TotalClusters This value contains the number of file storage clusters on
the volume.

BadClusters This value contains the number of clusters that have been
marked as bad. These clusters are unavailable for file
storage.

FreeClusters This value contains the number of clusters that are
currently available for storage.

Files This value contains the number of files, including folders,
on the volume. This number excludes the root folder and
files that have an allocated file size of 0.

FileChains This value contains the number of contiguous cluster
chains. On a defragmented volume, this value is identical
to the value of Files.

FreeChains This value contains the number of contiguous cluster
chains of free clusters. On a defragmented volume, this
value is 1.

LargestFreeChain This value contains the maximum allocated file size,
in number of clusters, for a newly allocated contiguous
file. On a defragmented volume, this value is identical to
FreeClusters.

5-5



5 Simulink Real-Time API Reference for C

DriveType This value contains a code for the type of permanent
storage installed in the target computer. The values are:

• 0 — Unknown drive
• 1 — Drive with no root folder
• 2 — Removable drive
• 3 — Fixed (hard) drive
• 4 — Remote drive (not supported)
• 5 — CDROM drive (not supported)
• 6 — RAM disk

Description

The diskinfo structure contains information for file system disks.

See Also

See Also
xPCFSDiskInfo

Introduced in R2012a

5-6



 fileinfo

fileinfo
Type definition for file information structure

Syntax
typedef struct {

int  FilePos;

int  AllocatedSize;

int  ClusterChains;

int  VolumeSerialNumber;

char FullName[255];

}fileinfo;

Fields

FilePos This value contains the current file pointer.
AllocatedSize This value contains the currently allocated file size.
ClusterChains This value indicates how many separate cluster chains are

allocated for the file.
VolumeSerialNumber This value holds the serial number of the volume the file

resides on.
FullName This value contains a copy of the complete path name of

the file. This field is valid only while the file is open.

Description

The fileinfo structure contains information for files in the file system.

There are the following limitations:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.

5-7



5 Simulink Real-Time API Reference for C

• A fully qualified file name can have a maximum of 260 characters: The file part can
have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

See Also

See Also
xPCFSFileInfo

Introduced before R2006a

5-8



 lgmode

lgmode
Type definition for logging options structure

Syntax
typedef struct {

   int    mode;

   double incrementvalue;

} lgmode;

Fields

mode This value indicates the type of logging you want. Specify
LGMOD_TIME for time-equidistant logging. Specify
LGMOD_VALUE for value-equidistant logging.

incrementvalue If you set mode to LGMOD_VALUE for value-equidistant
data, this option specifies the increment (difference in
amplitude) value between logged data points. A data point
is logged only when an output signal or a state changes by
incrementvalue.

If you set mode to LGMOD_TIME, incrementvalue is ignored.

Description

The lgmode structure specifies data logging options. The mode variable accepts either
the numeric values 0 or 1 or their equivalent constants LGMOD_TIME or LGMOD_VALUE
from xpcapiconst.h.

See Also

See Also
xPCSetLogMode | xPCGetLogMode

5-9



5 Simulink Real-Time API Reference for C

Introduced before R2006a

5-10



 scopedata

scopedata
Type definition for scope data structure

Syntax
typedef struct {

   int    number;

   int    type;

   int    state;

   int    signals[20];

   int    numsamples;

   int    decimation;

   int    triggermode;

   int    numprepostsamples;

   int    triggersignal

   int    triggerscope;

   int    triggerscopesample;

   double triggerlevel;

   int    triggerslope;

} scopedata; 

Fields
number The scope number.
type Determines whether the scope is displayed on the

development computer or on the target computer. Values
are one of the following:

  1 Host
  2 Target
state Indicates the scope state. Values are one of the following:
  0 Waiting to start
  1 Scope is waiting for a trigger
  2 Data is being acquired
  3 Acquisition is finished
  4 Scope is stopped (interrupted)

5-11



5 Simulink Real-Time API Reference for C

  5 Scope is preacquiring data
signals List of signal indices from the target object to display on

the scope.

Target scopes are restricted to 10 signals.
numsamples Number of contiguous samples captured during the

acquisition of a data package.
decimation A number, N, meaning every Nth sample is acquired in a

scope window.
triggermode Trigger mode for a scope. Values are one of the following:
  0 FreeRun (default)
  1 Software
  2 Signal
  3 Scope
numprepostsamples If this value is less than 0, numprepostsamples is the

number of samples to be saved before a trigger event. If
this value is greater than 0, numprepostsamples is the
number of samples to skip after the trigger event before
data acquisition begins.

triggersignal If triggermode is 2 (Signal), triggersignal identifies
the block output signal to use for triggering the scope.
Identify the signal with a signal index.

triggerscope If triggermode is 3 (Scope), triggerscope identifies
the scope to use for a trigger. A scope can be set to trigger
when another scope is triggered.

triggerscopesample If triggermode is 3 (Scope), triggerscopesample
specifies the number of samples to be acquired by the
triggering scope before triggering a second scope. This
value must be nonnegative.

triggerlevel If triggermode is 2 (Signal), triggerlevel indicates
the value the signal has to cross to trigger the scope to
start acquiring data. The trigger level can be crossed with
either a rising or falling signal.

triggerslope If triggermode is 2 (Signal), indicates whether the
trigger is on a rising or falling signal. Values are:

5-12



 scopedata

  0 Either rising or falling (default)
  1 Rising
  2 Falling

Description

The scopedata structure holds the data about a scope used in the functions
xPCGetScope and xPCSetScope. In the structure, the fields are as in the various
xPCGetSc* functions. For example, state is as in xPCScGetState, signals is as in
xPCScGetSignals. The signal vector is an array of the signal identifiers, terminated by
-1.

See Also

See Also
xPCSetScope | xPCGetScope | xPCScGetType | xPCScGetState |
xPCScGetSignals | xPCScGetNumSamples | xPCScGetDecimation
| xPCScGetTriggerMode | xPCScGetNumPrePostSamples |
xPCScGetTriggerSignal | xPCScGetTriggerScope | xPCScGetTriggerLevel |
xPCScGetTriggerSlope

Introduced before R2006a

5-13



5 Simulink Real-Time API Reference for C

xPCAddScope
Create scope

Prototype
void xPCAddScope(int port, int scType, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scType Enter the type of scope.
scNum Enter a number for a new scope. Values are 1, 2, 3. . .

Description

The xPCAddScope function creates a scope on the target computer. For scType, scopes
can be of type host or target, depending on the value of scType:

• SCTYPE_HOST for type host
• SCTYPE_TARGET for type target
• SCTYPE_FILE for type file

Constants for scType are defined in the header file xpcapiconst.h as SCTYPE_HOST,
SCTYPE_TARGET, and SCTYPE_FILE.

Calling the xPCAddScope function with scNum having the number of an existing scope
produces an error. Use xPCGetScopes to find the numbers of existing scopes.

See Also

See Also
xPCScAddSignal | xPCScRemSignal | xPCRemScope | xPCSetScope | xPCGetScope
| xPCGetScopes | Real-Time Application | Real-Time Application Properties

5-14



 xPCAddScope

Introduced before R2006a

5-15



5 Simulink Real-Time API Reference for C

xPCAverageTET
Return average task execution time

Prototype
double xPCAverageTET(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the average task execution time (TET) for the real-time application.

Description

The xPCAverageTET function returns the TET for the real-time application. You can use
this function when the real-time application is running or when it is stopped.

Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step. For a multirate model, use the profiler to find out what the execution time is
for each rate.

See Also

See Also
xPCMaximumTET | xPCMinimumTET | Real-Time Application | Real-Time Application
Properties

Introduced before R2006a

5-16



 xPCCloseConnection

xPCCloseConnection
Close TCP/IP communication connection

Prototype
void xPCCloseConnection(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Description

The xPCCloseConnection function closes the TCP/IP communication channel opened
by xPCOpenTcpIpPort, or xPCOpenConnection. Unlike xPCClosePort, it preserves
the connection information. A subsequent call to xPCOpenConnection succeeds without
the need to resupply communication data such as the IP address or port number. To
close the communication channel completely, call xPCDeRegisterTarget. Calling
the xPCCloseConnection function followed by calling xPCDeRegisterTarget is
equivalent to calling xPCClosePort.

Note: RS-232 communication type has been removed. Configure TCP/IP communication
instead.

See Also

See Also
xPCOpenConnection | xPCOpenTcpIpPort | xPCReOpenPort |
xPCRegisterTarget | xPCDeRegisterTarget

Introduced before R2006a

5-17



5 Simulink Real-Time API Reference for C

xPCClosePort
Close TCP/IP communication connection

Prototype
void xPCClosePort(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Description

The xPCClosePort function closes the TCP/IP communication channel
opened by xPCOpenTcpIpPort. Calling this function is equivalent to calling
xPCCloseConnection and xPCDeRegisterTarget.

Note: RS-232 communication type has been removed. Configure TCP/IP communication
instead.

See Also

See Also
xPCOpenTcpIpPort | xPCReOpenPort | xPCOpenConnection |
xPCCloseConnection | xPCRegisterTarget | xPCDeRegisterTarget | Real-Time
Application | Real-Time Application Properties

Introduced before R2006a

5-18



 xPCDeRegisterTarget

xPCDeRegisterTarget
Delete target communication properties from Simulink Real-Time API library

Prototype
void xPCDeRegisterTarget(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Description

The xPCDeRegisterTarget function causes the Simulink Real-Time API library to
completely “forget” about the target communication properties. Use this function to end
a session in which you use xPCOpenConnection and xPCCloseConnection to connect
and disconnect from the target without entering the properties each time. It works
similarly to xPCClosePort, but does not close the connection to the target computer.
Before calling this function, you must first call the function xPCCloseConnection
to close the connection to the target computer. The combination of calling the
xPCCloseConnection and xPCDeRegisterTarget functions has the same result as
calling xPCClosePort.

See Also

See Also
xPCRegisterTarget | xPCOpenTcpIpPort | xPCClosePort | xPCReOpenPort |
xPCOpenConnection | xPCCloseConnection | xPCTargetPing

Introduced before R2006a

5-19



5 Simulink Real-Time API Reference for C

xPCErrorMsg
Return text description for error message

Prototype
char *xPCErrorMsg(int error_number, char *error_message);

Arguments

error_number Enter the constant of an error.
error_message The xPCErrorMsg function copies the error message

character string into the buffer pointed to by error_message.
error_message is then returned. You can later use
error_message in a function such as printf.

If error_message is NULL, the xPCErrorMsg function returns a
pointer to a statically allocated character string.

Return

Returns a character string associated with the error error_number.

Description

The xPCErrorMsg function returns error_message, which makes it convenient to
use in a printf or similar statement. Use the xPCGetLastError function to get the
constant for which you are getting the message.

See Also

See Also
xPCSetLastError | xPCGetLastError

5-20



 xPCErrorMsg

Introduced before R2006a

5-21



5 Simulink Real-Time API Reference for C

xPCFreeAPI
Unload Simulink Real-Time DLL

Prototype
void xPCFreeAPI(void);

Description

The xPCFreeAPI function unloads the Simulink Real-Time dynamic link library. To
unload the Simulink Real-Time API DLL and free the memory allocated to the API
functions, call this function once at the end of your custom program. This function is
defined in the file xpcinitfree.c. Link this file with your program.

See Also

See Also
xPCInitAPI | xPCNumLogWraps | xPCNumLogSamples | xPCMaxLogSamples |
xPCGetStateLog | xPCGetTETLog | xPCSetLogMode | xPCGetLogMode

Introduced before R2006a

5-22



 xPCFSCD

xPCFSCD
Change current folder on target computer to specified path

Prototype
void xPCFSCD(int port, char *dir);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
dir Enter the path to the new folder on the target computer.

Description

The xPCFSCD function changes the current folder on the target computer to the path
specified in dir. Use the xPCFSGetPWD function to show the current folder of the target
computer.

See Also

See Also
xPCFSGetPWD | File System

Introduced before R2006a

5-23



5 Simulink Real-Time API Reference for C

xPCFSCloseFile
Close file on target computer

Prototype
void xPCFSCloseFile(int port, int fileHandle);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
fileHandle Enter the file handle of an open file on the target computer.

Description

The xPCFSCloseFile function closes the file associated with fileHandle on the target
computer. fileHandle is the handle of a file previously opened by the xPCFSOpenFile
function.

See Also

See Also
xPCFSOpenFile | xPCFSReadFile | xPCFSWriteFile | File System

Introduced before R2006a

5-24



 xPCFSDir

xPCFSDir
Get contents of specified folder on target computer

Prototype
void xPCFSDir(int port, const char *path, char *data, int numbytes);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
path Enter the path on the target computer.
data The contents of the folder are stored in data, whose allocated size is

specified in numbytes.
numbytes Enter the size, in bytes, of the array data.

Description

The xPCFSDir function copies the contents of the target computer folder specified by
path into data. The xPCFSDir function returns the listing in the data array, which
must be of size numbytes. Use the xPCFSDirSize function to obtain the size of the
folder listing for the numbytes parameter.

See Also

See Also
xPCFSDirSize | File System

Introduced before R2006a

5-25



5 Simulink Real-Time API Reference for C

xPCFSDirItems
Get contents of specified folder on target computer

Prototype
void xPCFSDirItems(int port, const char *path, dirStruct *dirs, int numDirItems);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
path Enter the path on the target computer.
dirs Enter the structure for receiving the contents of the folder.
numDirItems Enter the number of items in the folder.

Description

The xPCFSDirItems function copies the contents of the target computer folder specified
by path. The xPCFSDirItems function copies the listing into the dirs structure, which
must be of size numDirItems. Use the xPCFSDirStructSize function to obtain the size
of the folder for the numDirItems parameter.

See Also

See Also
dirStruct | File System | xPCFSDirStructSize

Introduced in R2007a

5-26



 xPCFSDirSize

xPCFSDirSize
Return size of specified folder listing on target computer

Prototype
int xPCFSDirSize(int port, const char *path);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
path Enter the folder path on the target computer.

Return

Returns the size, in bytes, of the specified folder listing. If this function detects an error,
it returns -1.

Description

The xPCFSDirSize function returns the size, in bytes, of the buffer required to list the
folder contents on the target computer. Use this size as the numbytes parameter in the
xPCFSDir function.

See Also

See Also
File System | xPCFSDirItems

Introduced before R2006a

5-27



5 Simulink Real-Time API Reference for C

xPCFSDirStructSize
Get number of items in folder

Prototype
int xPCFSDirStructSize(int port, const char *path);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
path Enter the folder path on the target computer.

Return

Returns the number of items in the folder on the target computer. If this function detects
an error, it returns -1.

Description

The xPCFSDirStructSize function returns the number of items in the folder on the
target computer. Use this size as the numDirItems parameter in the xPCFSDirItems
function.

See Also

See Also
xPCFSDir | File System

Introduced in R2007a

5-28



 xPCFSDiskInfo

xPCFSDiskInfo
Information about target computer file system

Prototype
diskinfo xPCFSDiskInfo(int  port, const char *driveletter);

Arguments

port Enter the value returned by the function
xPCOpenTcpIpPort.

driveletter Enter the drive letter of the file system for which you
want information, for example 'C:\'.

Description

The xPCFSDiskInfo function returns disk information for the file system of the
specified target computer drive, driveletter. This function returns this information in
the diskinfo structure.

See Also

See Also
File System

Introduced in R2006a

5-29



5 Simulink Real-Time API Reference for C

xPCFSFileInfo
Return information for open file on target computer

Prototype
fileinfo xPCFSFileInfo(int port, int fileHandle);

Arguments

port Enter the value returned by the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target
computer.

Description

The xPCFSFileInfo function returns information about the specified open file,
filehandle, in a structure of type fileinfo.

See Also

See Also
File System

Introduced in R2008b

5-30



 xPCFSGetError

xPCFSGetError
Get text description for error number on target computer file system

Prototype
void xPCFSGetError(int port, unsigned int error_number,

char *error_message);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
error_number Enter the constant of an error.
error_message The character string of the message associated with the error

error_number is stored in error_message.

Description

The xPCFSGetError function gets the error_message associated with error_number.
This function enables you to use the error message in a printf or similar statement.

Introduced before R2006a

5-31



5 Simulink Real-Time API Reference for C

xPCFSGetFileSize
Return size of file on target computer

Prototype
unsigned int xPCFSGetFileSize(int port, int fileHandle);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
fileHandle Enter the file handle of an open file on the target computer.

Return

Returns the size of the specified file in bytes. If this function detects an error, it returns
-1.

Description

The xPCFSGetFileSize function returns the size, in bytes, of the file associated with
fileHandle on the target computer. fileHandle is the handle of a file previously
opened by the xPCFSOpenFile function.

The largest single file that you can create on the target computer is 4 GB.

See Also

See Also
xPCFSOpenFile | xPCFSReadFile | File System

Introduced before R2006a

5-32



 xPCFSGetPWD

xPCFSGetPWD
Get current folder of target computer

Prototype
void xPCFSGetPWD(int port, char *pwd);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
pwd The path of the current folder is stored in pwd.

Description

The xPCFSGetPWD function places the path of the current folder on the target computer
in pwd. The caller must allocate an array and pass it into pwd.

See Also

See Also
File System

Introduced before R2006a

5-33



5 Simulink Real-Time API Reference for C

xPCFSMKDIR
Create folder on target computer

Prototype
void xPCFSMKDIR(int port, const char *dirname);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
dirname Enter the name of the new folder on the target computer.

A fully qualified folder name can have a maximum of 248 characters,
including the drive letter, colon, and backslash.

Description

The xPCFSMKDIR function creates the folder dirname in the current folder of the target
computer.

See Also

See Also
xPCFSGetPWD | File System

Introduced before R2006a

5-34



 xPCFSOpenFile

xPCFSOpenFile
Open file on target computer

Prototype
int xPCFSOpenFile(int port, const char *filename,

const char *permission);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
filename Enter the name of a file on the target computer.
permission Enter the read/write permission with which to open the file.

Values are r (read) or w (read/write).

Return

Returns the file handle for the opened file. If function detects an error, it returns -1.

Description

The xPCFSOpenFile function opens the specified file, filename, on the target
computer. If the file does not exist, the xPCFSOpenFile function creates filename, then
opens it. You can open a file for read or read/write access.

There are the following limitations:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most

5-35



5 Simulink Real-Time API Reference for C

three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

See Also

See Also
xPCFSCloseFile | xPCFSGetFileSize | xPCFSReadFile | xPCFSWriteFile | File
System

Introduced before R2006a

5-36



 xPCFSReadFile

xPCFSReadFile
Read open file on target computer

Prototype
void xPCFSReadFile(int port, int fileHandle, unsigned int start,

unsigned int numbytes, unsigned char *data);

Arguments
port Enter the value returned by the function xPCOpenTcpIpPort.
fileHandle Enter the file handle of an open file on the target computer.
start Enter an offset from the beginning of the file from which this function

can start to read.
numbytes Enter the number of bytes this function is to read from the file.
data The contents of the file are stored in data.

Description
The xPCFSReadFile function reads an open file on the target computer and places
the results of the read operation in the array data. fileHandle is the file handle of
a file previously opened by xPCFSOpenFile. You can specify that the read operation
begin at the beginning of the file (default) or at a certain offset into the file (start). The
numbytes parameter specifies how many bytes the xPCFSReadFile function is to read
from the file.

The largest single file that you can create on the target computer is 4 GB.

See Also

See Also
xPCFSCloseFile | xPCFSGetFileSize | xPCFSOpenFile | xPCFSWriteFile | File
System

5-37



5 Simulink Real-Time API Reference for C

Introduced before R2006a

5-38



 xPCFSRemoveFile

xPCFSRemoveFile
Remove file from target computer

Prototype
void xPCFSRemoveFile(int port, const char *filename);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
filename Enter the name of a file on the target computer.

Description

The xPCFSRemoveFile function removes the file named filename from the target
computer file system. filename can be a relative or absolute path name on the target
computer.

See Also

See Also
File System

Introduced before R2006a

5-39



5 Simulink Real-Time API Reference for C

xPCFSRMDIR
Remove folder from target computer

Prototype
void xPCFSRMDIR(int port, const char *dirname);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
dirname Enter the name of a folder on the target computer.

Description

The xPCFSRMDIR function removes a folder named dirname from the target computer
file system. dirname can be a relative or absolute path name on the target computer.

See Also

See Also
File System

Introduced before R2006a

5-40



 xPCFSScGetFilename

xPCFSScGetFilename
Get name of file for scope

Prototype
const char *xPCFSScGetFilename(int port, int scNum, char *filename);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
filename The name of the file for the specified scope is stored in filename.

Return

Returns the value of filename, the name of the file for the scope.

Description

The xPCFSScGetFilename function returns the name of the file to which scope scNum
saves signal data. filename points to a caller-allocated character array to which the file
name is copied.

See Also

See Also
xPCFSScSetFilename | Real-Time File Scope

Introduced before R2006a

5-41



5 Simulink Real-Time API Reference for C

xPCFSScGetWriteMode
Get write mode of file for scope

Prototype
int xPCFSScGetWriteMode(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the number indicating the write mode. Values are

0 Lazy mode. The FAT entry is updated only when the file is closed and not
during each file write operation. This mode is faster than commit mode.
However, if the system crashes before the file is closed, the file system does
not have the actual file size. (The file contents, however, are intact.)

1 Commit mode. Each file write operation simultaneously updates the FAT
entry for the file. This mode is slower than lazy mode, but the file system
maintains the actual file size.

Description

The xPCFSScGetWriteMode function returns the write mode of the file for the scope.

See Also

See Also
xPCFSScSetWriteMode | Real-Time File Scope

5-42



 xPCFSScGetWriteMode

Introduced before R2006a

5-43



5 Simulink Real-Time API Reference for C

xPCFSScGetWriteSize
Get block write size of data chunks

Prototype
unsigned int xPCFSScGetWriteSize(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the block size, in bytes, of the data chunks.

Description

The xPCFSScGetWriteSize function gets the block size, in bytes, of the data chunks.

See Also

See Also
xPCFSScSetWriteSize | Real-Time File Scope

Introduced before R2006a

5-44



 xPCFSScSetFilename

xPCFSScSetFilename
Specify name for file to contain signal data

Prototype
void xPCFSScSetFilename(int port, int scNum, 

const char *filename);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
filename Enter the name of a file for receiving the signal data.

Description

The xPCFSScSetFilename function sets the name of the file to which the scope saves
the signal data. The Simulink Real-Time software creates this file in the target computer
file system. You can only call this function when the scope is stopped.

A fully qualified file name can have a maximum of 260 characters: The file part can have
at most 12 characters: eight for the file name, one for the period, and at most three for
the file extension. A file name longer than eight characters is truncated to six characters
followed by '~1'.

See Also

See Also
xPCFSScGetFilename | Real-Time File Scope

Introduced before R2006a

5-45



5 Simulink Real-Time API Reference for C

xPCFSScSetWriteMode
Specify when file allocation table entry is updated

Prototype
void xPCFSScSetWriteMode(int port, int scNum, int writeMode);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
writeMode Enter an integer for the write mode:
  0 Enables lazy write mode
  1 Enables commit write mode

Description

The xPCFSScSetWriteMode function specifies when a file allocation table (FAT) entry is
updated. Both modes write the signal data to the file, as follows:

0 Lazy mode. The FAT entry is updated only when the file is closed and not
during each file write operation. This mode is faster than commit mode.
However, if the system crashes before the file is closed, the file system does
not have the actual file size. (The file contents, however, are intact.)

1 Commit mode. Each file write operation simultaneously updates the FAT
entry for the file. This mode is slower than lazy mode, but the file system
maintains the actual file size.

See Also

See Also
xPCFSScGetWriteMode | Real-Time File Scope

5-46



 xPCFSScSetWriteMode

Introduced before R2006a

5-47



5 Simulink Real-Time API Reference for C

xPCFSScSetWriteSize
Specify that memory buffer collect data in multiples of write size

Prototype
void xPCFSScSetWriteSize(int port, int scNum, unsigned int 

writeSize);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
writeSize Enter the block size, in bytes, of the data chunks.

Description

The xPCFSScSetWriteSize function specifies that a memory buffer collect data in
multiples of writeSize. By default, this parameter is 512 bytes, which is the typical
disk sector size. Using a block size that is the same as the disk sector size provides better
performance. writeSize must be a multiple of 512.

See Also

See Also
xPCFSScGetWriteSize | Real-Time File Scope

Introduced before R2006a

5-48



 xPCFSWriteFile

xPCFSWriteFile
Write to file on target computer

Prototype
void xPCFSWriteFile(int port, int fileHandle, int numbytes,

const unsigned char *data);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
fileHandle Enter the file handle of an open file on the target computer.
numbytes Enter the number of bytes this function is to write into the file.
data The contents to write to fileHandle are stored in data.

Description

The xPCFSWriteFile function writes the contents of the array data to the file specified
by fileHandle on the target computer. The fileHandle parameter is the handle of a
file previously opened by xPCFSOpenFile. numbytes is the number of bytes to write to
the file.

See Also

See Also
xPCFSCloseFile | xPCFSGetFileSize | xPCFSOpenFile | xPCFSReadFile

Introduced before R2006a

5-49



5 Simulink Real-Time API Reference for C

xPCGetAPIVersion
Get version number of Simulink Real-Time API

Prototype
const char *xPCGetAPIVersion(void);

Return

Returns a character string with the version number of the Simulink Real-Time kernel on
the target computer.

Description

The xPCGetApiVersion function returns a character string with the version number of
the Simulink Real-Time kernel on the target computer. The character string is a constant
string within the API DLL. Do not modify this string.

See Also

See Also
xPCGetTargetVersion

Introduced in R2007a

5-50



 xPCGetAppName

xPCGetAppName
Return real-time application name

Prototype
char *xPCGetAppName(int port, char *model_name);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
model_name The xPCGetAppName function copies the real-time application

name character string into the buffer pointed to by model_name.
model_name is then returned. You can later use model_name in a
function such as printf.

The maximum size of the buffer is 256 bytes. To reserve enough
space for the name character string, allocate a buffer of size 256
bytes.

Return

Returns a character string with the name of the real-time application.

Description

The xPCGetAppName function returns the name of the real-time application. You can use
the return value, model_name, in a printf or similar statement. If an error occurs, the
name character string is unchanged.

Examples

Allocate 256 bytes for the buffer appname.

5-51



5 Simulink Real-Time API Reference for C

char *appname=malloc(256);

xPCGetAppName(iport,appname);

appname=realloc(appname,strlen(appname)+1);

...

free(appname);

See Also

See Also
xPCIsAppRunning | Real-Time Application Properties

Introduced before R2006a

5-52



 xPCGetEcho

xPCGetEcho
Return display mode for target message window

Prototype
int xPCGetEcho(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns a number indicating the display mode. Values are

1 Display is on. Messages are displayed in the message display window on
the target.

0 Display is off.
-1 The function detected an error.

Description

The xPCGetEcho function returns the display mode of the target computer using
communication channel port. Messages include the status of downloading the real-time
application, changes to parameters, and changes to scope signals.

See Also

See Also
xPCSetEcho

5-53



5 Simulink Real-Time API Reference for C

Introduced before R2006a

5-54



 xPCGetExecTime

xPCGetExecTime
Return real-time application execution time

Prototype
double xPCGetExecTime(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the current execution time for a real-time application. If the function detects an
error, it returns -1.

Description

The xPCGetExecTime function returns the current execution time for the running real-
time application. If the real-time application is stopped, the value is the last running
time when the application was stopped. If the real-time application is running, the value
is the current running time.

See Also

See Also
xPCSetStopTime | xPCGetStopTime | Real-Time Application

Introduced before R2006a

5-55



5 Simulink Real-Time API Reference for C

xPCGetLastError
Return constant of last error

Prototype
int xPCGetLastError(void);

Return

Returns the error constant for the last reported error. If the function did not detect an
error, it returns 0.

Description

The xPCGetLastError function returns the constant of the last reported error by
another API function. This value is reset every time you call a new function. Therefore,
check this constant value immediately after a call to an API function. For a list of error
constants and messages, see “C API Error Messages” on page 1-8.

See Also

See Also
xPCErrorMsg | xPCSetLastError

Introduced before R2006a

5-56



 xPCGetLoadTimeOut

xPCGetLoadTimeOut
Return timeout value for communication between development and target computers

Prototype
int xPCGetLoadTimeOut(int port);

Arguments
port Enter the value returned by the function xPCOpenTcpIpPort.

Return
Returns the number of seconds allowed for communication between the development
computer and the real-time application running on the target computer. If the function
detects an error, it returns -1.

Description
The xPCGetLoadTimeOut function returns the number of seconds allowed for
communication between the development computer and the real-time application
running on the target computer. When a Simulink Real-Time API function initiates
communication, it waits for some seconds before checking if the communication is
complete. If communication with the target computer is not complete, the function
returns a timeout error.

Use the xPCGetLoadTimeOut function if you suspect that the current number of seconds
(the timeout value) is too short. Then use the xPCSetLoadTimeOut function to set the
timeout to a higher number.

See Also

See Also
xPCLoadApp | xPCSetLoadTimeOut | xPCUnloadApp

5-57



5 Simulink Real-Time API Reference for C

Topics
“Communications Timeout”

Introduced before R2006a

5-58



 xPCGetLogMode

xPCGetLogMode
Return logging mode and increment value for real-time application

Prototype
lgmode xPCGetLogMode(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the logging mode in the lgmode structure. If the logging mode is 1
(LGMOD_VALUE), this function also returns an increment value in the lgmode structure.
If an error occurs, this function returns -1.

Description

The xPCGetLogMode function gets the logging mode and increment value for the
current real-time application. The increment (difference in amplitude) value is measured
between logged data points. A data point is logged only when an output signal or a state
changes by the increment value.

See Also

See Also
xPCSetLogMode | lgmode

Introduced before R2006a

5-59



5 Simulink Real-Time API Reference for C

xPCGetNumOutputs
Return number of outputs

Prototype
int xPCGetNumOutputs(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the number of outputs in the current real-time application. If the function
detects an error, it returns -1.

Description

The xPCGetNumOutputs function returns the number of outputs in the real-time
application. The number of outputs equals the sum of the input signal widths of the
output blocks at the root level of the Simulink model.

See Also

See Also
xPCGetOutputLog | xPCGetNumStates | xPCGetStateLog

Introduced before R2006a

5-60



 xPCGetNumParams

xPCGetNumParams
Return number of tunable parameters

Prototype
int xPCGetNumParams(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the number of tunable parameters in the real-time application. If the function
detects an error, it returns -1.

Description

The xPCGetNumParams function returns the number of tunable parameters in the real-
time application. Use this function to see how many parameters you can get or modify.

See Also

See Also
xPCGetParamIdx | xPCSetParam | xPCGetParam | xPCGetParamName |
xPCGetParamDims | Real-Time Application

Introduced before R2006a

5-61



5 Simulink Real-Time API Reference for C

xPCGetNumScopes
Return number of scopes added to real-time application

Prototype
int  xPCGetNumScopes(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the number of scopes that have been added to the real-time application. If the
function detects an error, it returns -1.

Description

The xPCGetNumScopes function returns the number of scopes that have been added to
the real-time application.

Introduced in R2008b

5-62



 xPCGetNumSignals

xPCGetNumSignals
Return number of signals

Prototype
int xPCGetNumSignals(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the number of signals in the real-time application. If the function detects an
error, it returns -1.

Description

The xPCGetNumSignals function returns the total number of signals in the real-time
application that can be monitored from the development computer. Use this function to
see how many signals you can monitor.

See Also

See Also
xPCGetSignalIdx | xPCGetSignal | xPCGetSignals | xPCGetSignalName |
xPCGetSignalWidth | Real-Time Application

Introduced before R2006a

5-63



5 Simulink Real-Time API Reference for C

xPCGetNumStates
Return number of states

Prototype
int xPCGetNumStates(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the number of states in the real-time application. If the function detects an
error, it returns -1.

Description

The xPCGetNumStates function returns the number of states in the real-time
application.

See Also

See Also
xPCGetStateLog | xPCGetNumOutputs | xPCGetOutputLog | Real-Time Application

Introduced before R2006a

5-64



 xPCGetOutputLog

xPCGetOutputLog

Copy output log data to array

Prototype

void xPCGetOutputLog(int port, int first_sample, int num_samples, 

int decimation, int output_id, double *output_data);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
first_sample Enter the index of the first sample to copy.
num_samples Enter the number of samples that the function is to copy from the

output log.
decimation Select whether to copy every sample value or every Nth value.
output_id Enter an output identification number.
output_data The log is stored in output_data, whose allocation is the

responsibility of the caller.

Description

The xPCGetOutputLog function gets the output log and copies that log to an array.
You get the data for each output signal in turn by specifying output_id. Output IDs
range from 0 to (N-1), where N is the return value of xPCGetNumOutputs. Entering 1 for
decimation copies all values. Entering N copies every Nth value.

For first_sample, the sample indices range from 0 to (N-1), where N is the return value
of xPCNumLogSamples. Get the maximum number of samples by calling the function
xPCNumLogSamples.

The real-time application must be stopped before you get the number.

5-65



5 Simulink Real-Time API Reference for C

See Also

See Also
xPCNumLogWraps | xPCNumLogSamples | xPCMaxLogSamples | xPCGetNumOutputs
| xPCGetStateLog | xPCGetTETLog | xPCGetTimeLog | Real-Time Application

Introduced before R2006a

5-66



 xPCGetParam

xPCGetParam
Get parameter value and copy it to array

Prototype
void xPCGetParam(int port, int paramIndex, double *paramValue);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
paramIndex Enter the index for a parameter.
paramValue The function returns a parameter value as an array of doubles.

Description

The xPCGetParam function returns the parameter as an array in paramValue.
paramValue must be large enough to hold the parameter. You can query the size by
calling the function xPCGetParamDims. Get the parameter index by calling the function
xPCGetParamIdx. The parameter matrix is returned as a vector, with the conversion
being done in column-major format. It is also returned as a double, regardless of the data
type of the actual parameter.

For paramIndex, values range from 0 to (N-1), where N is the return value of
xPCGetNumParams.

See Also

See Also
xPCSetParam | xPCGetParamDims | xPCGetParamIdx | xPCGetNumParams | Real-
Time Application

Introduced before R2006a

5-67



5 Simulink Real-Time API Reference for C

xPCGetParamDims
Get row and column dimensions of parameter

Prototype
void xPCGetParamDims(int port, int paramIndex, int *dimension);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
paramIndex Parameter index.
dimension Dimensions (row, column) of a parameter.

Description

The xPCGetParamDims function gets the dimensions (row, column) of a parameter with
paramIndex and stores them in dimension, which must have at least two elements.

For paramIndex, values range from 0 to (N-1), where N is the return value of
xPCGetNumParams.

See Also

See Also
xPCGetParam | xPCGetParamName | xPCGetParamDims | xPCGetParamIdx |
xPCGetNumParams | xPCSetParam | Real-Time Application

Introduced before R2006a

5-68



 xPCGetParamIdx

xPCGetParamIdx
Return parameter index

Prototype
int xPCGetParamIdx(int port, const char *blockName,  

const char *paramName);

Arguments
port Enter the value returned by the function xPCOpenTcpIpPort.
blockName Enter the full block path generated by Simulink Coder™.
paramName Enter the parameter name for a parameter associated with the

block.

Return
Returns the parameter index for the parameter name. If the function detects an error, it
returns -1.

Description
The xPCGetParamIdx function returns the parameter index for the parameter name
(paramName) associated with a Simulink block (blockName). Both blockName and
paramName must be identical to the names that were generated at real-time application
building time. To find the block names, access the file model_namept.m in the generated
code, where model_name is the name of the model. A block can have one or more
parameters.

See Also

See Also
xPCGetParam | xPCGetParamName | xPCGetParamDims | Real-Time Application

5-69



5 Simulink Real-Time API Reference for C

Introduced before R2006a

5-70



 xPCGetParamName

xPCGetParamName
Get name of parameter

Prototype
void xPCGetParamName(int port, int paramIdx, char *blockName, char 

*paramName);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
paramIdx Enter a parameter index.
blockName Character string with the full block path generated by Simulink

Coder.
paramName Name of a parameter for a specific block.

Description

The xPCGetParamName function gets the parameter name and block name for a
parameter with the index paramIdx. The block path and name are returned and
stored in blockName, and the parameter name is returned and stored in paramName.
Allocate enough space for both blockName and paramName. If the paramIdx is invalid,
xPCGetLastError returns nonzero, and the character strings are unchanged. Get the
parameter index from the function xPCGetParamIdx.

See Also

See Also
xPCGetParam | xPCGetParamDims | xPCGetParamIdx | xPCGetNumParams |
xPCSetParam | Real-Time Application

Introduced before R2006a

5-71



5 Simulink Real-Time API Reference for C

xPCGetSampleTime
Return real-time application sample time

Prototype
double xPCGetSampleTime(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the sample time, in seconds, of the real-time application. If the function detects
an error, it returns -1.

Description

The xPCGetSampleTime function returns the sample time, in seconds, of the real-time
application. You can get the error by using the function xPCGetLastError.

See Also

See Also
xPCSetSampleTime | Real-Time Application

Introduced before R2006a

5-72



 xPCGetScope

xPCGetScope

Get and copy scope data to structure

Prototype

scopedata xPCGetScope(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns a structure of type scopedata.

Description

Note: The xPCGetScope function will be removed in a future release. Use the
xPCScGetScopePropertyName functions to access property values instead. For
example, to get the number of samples being acquired in one data acquisition cycle, use
xPCScGetNumSamples.

The xPCGetScope function gets properties of a scope with scNum and copies the
properties into a structure with type scopedata. You can use this function with
xPCSetScope to change several properties of a scope at one time. See scopedata for a
list of properties. Use the xPCGetScope function to get the scope number.

5-73



5 Simulink Real-Time API Reference for C

See Also

See Also
xPCSetScope | scopedata | Real-Time Application

Introduced before R2006a

5-74



 xPCGetScopeList

xPCGetScopeList
Get and copy list of scope numbers

Prototype
void xPCGetScopeList(int port, int *data);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
data List of scope numbers in an integer array (allocated by the caller) as a

list of unsorted integers.

Description

The xPCGetScopeList function gets the list of scopes currently defined. data must
be large enough to hold the list of scopes. You can query the size by calling the function
xPCGetNumScopes.

Note: Use the xPCGetScopeList function instead of the xPCGetScopes function. The
xPCGetScopes will be removed in a future release.

Introduced in R2008b

5-75



5 Simulink Real-Time API Reference for C

xPCGetScopes
Get and copy list of scope numbers

Prototype
void xPCGetScopes(int port, int *data);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
data List of scope numbers in an integer array (allocated by the caller) as a

list of unsorted integers and terminated by -1.

Description

The xPCGetScopes function gets the list of scopes currently defined. You can use the
constant MAX_SCOPES (defined in xpcapiconst.h) as the size of data. MAX_SCOPES is
set to 30.

Note: This function will be removed in a future release. Use the xPCGetScopeList
function instead.

See Also

See Also
xPCSetScope | xPCGetScope | xPCScGetSignals | Real-Time Application

Introduced before R2006a

5-76



 xPCGetSessionTime

xPCGetSessionTime
Return length of time Simulink Real-Time kernel has been running

Prototype
double xPCGetSessionTime(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the amount of time in seconds that the Simulink Real-Time kernel has been
running on the target computer. If the function detects an error, it returns -1.

Description

The xPCGetSessionTime function returns, as a double, the amount of time in seconds
that the Simulink Real-Time kernel has been running. This value is also the time that
has elapsed since you last booted the target computer.

Introduced in R2008b

5-77



5 Simulink Real-Time API Reference for C

xPCGetSignal
Return value of signal

Prototype
double xPCGetSignal(int port, int sigNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
sigNum Enter a signal number.

Return

Returns the current value of signal sigNum. If the function detects an error, it returns
-1.

Description

The xPCGetSignal function returns the current value of a signal. For vector
signals, use xPCGetSignals rather than call this function multiple times. Use the
xPCGetSignalIdx function to get the signal number.

See Also

See Also
xPCGetSignals | Real-Time Application

Introduced before R2006a

5-78



 xPCGetSignalIdx

xPCGetSignalIdx
Return index for signal

Prototype
int xPCGetSignalIdx(int port, const char *sigName);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
sigName Enter a signal name.

Return

Returns the index for the signal with name sigName. If the function detects an error, it
returns -1.

Description

The xPCGetSignalIdx function returns the index of a signal. The name must be
identical to the name generated when the real-time application was built. To find the
name, access the file model_namebio.m in the generated code, where model_name is
the name of the model. The creator of the custom program already knows the signal
name.

See Also

See Also
xPCGetSignalName | xPCGetSignalWidth | xPCGetSignal | xPCGetSignals |
Real-Time Application

5-79



5 Simulink Real-Time API Reference for C

Introduced before R2006a

5-80



 xPCGetSigIdxfromLabel

xPCGetSigIdxfromLabel

Return array of signal indices

Prototype

int xPCGetSigIdxfromLabel(int port, const char *sigLabel, int *sigIds);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
sigLabel Character string with the name of a signal label.
sigIds Return array of signal indices.

Return

If the function finds a signal, it fills an array sigIds with signal indices and returns 0. If
it does not find a signal, it returns -1.

Description

The xPCGetSigIdxfromLabel function returns in sigIds the array of signal indices
for signal sigName. This function assumes that you have labeled the signal for which you
request the indices (see the Signal name parameter of the “Signal Properties Controls”
(Simulink)). The Simulink Real-Time software refers to Simulink signal names as signal
labels. The creator of the custom program already knows the signal name/label. Signal
labels must be unique.

sigIds must be large enough to contain the array of indices. You can use the
xPCGetSigLabelWidth function to get the amount of memory that the program must
allocate for the sigIds array.

5-81



5 Simulink Real-Time API Reference for C

See Also

See Also
xPCGetSigLabelWidth | xPCGetSignalLabel

Introduced in R2007a

5-82



 xPCGetSignalLabel

xPCGetSignalLabel

Copy label of signal to character array

Prototype

char * xPCGetSignalLabel(int port, int sigIdx, char *sigLabel);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
sigIdx Enter signal index.
sigLabel Return signal label associated with signal index, sigIdx.

Return

Returns the label of the signal.

Description

The xPCGetSignalLabel function copies and returns the signal label, including the
block path, of a signal with sigIdx. The result is stored in sigLabel. If sigIdx is
invalid, xPCGetLastError returns a nonzero value, and sigLabel is unchanged. The
function returns sigLabel, which makes it convenient to use in a printf or similar
statement. This function assumes that you already know the signal index. Signal labels
must be unique.

This function assumes that you have labeled the signal for which you request the index
(see the Signal name parameter of the “Signal Properties Controls” (Simulink)). The
Simulink Real-Time software refers to Simulink signal names as signal labels. The
creator of the custom program already knows the signal name/label.

5-83



5 Simulink Real-Time API Reference for C

See Also

See Also
xPCGetSigIdxfromLabel | xPCGetSigLabelWidth

Introduced in R2007a

5-84



 xPCGetSigLabelWidth

xPCGetSigLabelWidth
Return number of elements in signal

Prototype
int xPCGetSigLabelWidth(int port, const char *sigName);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
sigName Character string with the name of a signal.

Return

Returns the number of elements that the signal sigName contains. If the function detects
an error, it returns -1.

Description

The xPCGetSigLabelWidth function returns the number of elements that the signal
sigName contains. This function assumes that you have labeled the signal for which
you request the elements (see the Signal name parameter of the “Signal Properties
Controls” (Simulink)). The Simulink Real-Time software refers to Simulink signal names
as signal labels. The creator of the custom program already knows the signal name/label.
Signal labels must be unique.

See Also

See Also
xPCGetSigIdxfromLabel | xPCGetSignalLabel

5-85



5 Simulink Real-Time API Reference for C

Introduced in R2007a

5-86



 xPCGetSignalName

xPCGetSignalName
Copy name of signal to character array

Prototype
char *xPCGetSignalName(int port, int sigIdx, char *sigName);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
sigIdx Enter a signal index.
sigName Character string with the name of a signal.

Return

Returns the name of the signal.

Description

The xPCGetSignalName function copies and returns the signal name, including the
block path, of a signal with sigIdx. The result is stored in sigName. If sigIdx is
invalid, xPCGetLastError returns a nonzero value, and sigName is unchanged. The
function returns sigName, which makes it convenient to use in a printf or similar
statement. This function assumes that you already know the signal index.

See Also

See Also
xPCGetSignalIdx | xPCGetSignalWidth | xPCGetSignal | xPCGetSignals | Real-
Time Application

5-87



5 Simulink Real-Time API Reference for C

Introduced before R2006a

5-88



 xPCGetSignals

xPCGetSignals
Return vector of signal values

Prototype
int xPCGetSignals(int port, int numSignals, const int *signals, 

double *values);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
numSignals Enter the number of signals to be acquired (that is, the number of

values in signals).
signals Enter the list of signal numbers to be acquired.
values Returned values are stored in the double array values.

Return

If the function completes execution without detecting an error, it returns 0. If the
function detects an error, it returns -1.

Description

The xPCGetSignals function is the vector version of the function xPCGetSignal.
This function returns the values of a vector of signals (up to 1000) as fast as it can
acquire them. The function acquires some signal values in one time step and later
signals in another. To acquire signal values within one time step, define a scope of
type SCTYPE_HOST and use xPCScGetData. xPCGetSignal does the same thing for a
single signal, and could be used multiple times to achieve the same result. However, the
xPCGetSignals function is faster, and the signal values are more likely to be spaced
closely together. The signals are converted to doubles regardless of the actual data type
of the signal.

5-89



5 Simulink Real-Time API Reference for C

For signals, store the list you provide in an integer array. Get the signal numbers with
the function xPCGetSignalIdx.

Example

To reference signal vector data rather than scalar values, pass a vector of indices for the
signal data. For example:
/**********************************************************/ 

 

/* Assume a signal of width 10, with the blockpath 

* mySubsys/mySignal and the signal index s1. 

*/ 

 

int i; 

int sigId[10]; 

double sigVal[10]; /* Signal values are stored here */ 

 

/* Get the ID of the first signal */ 

sigId[0] = xPCGetSignalIdx(port, "mySubsys/mySignal/s1"); 

 

if (sigId[0] == -1) { 

/* Handle error */ 

} 

 

for (i = 1; i < 10; i++) { 

     sigId[i] = sigId[0] + i; 

} 

 

xPCGetSignals(port, 10, sigId, sigVal); 

/* If no error, sigVal should have the signal values */ 

 

/***********************************************************/

To get the signals repeatedly, repeat the call to xPCGetSignals. If you do not change
sigID, call xPCGetSignalIdx only once.

See Also

See Also
xPCGetSignal | xPCGetSignalIdx

Introduced before R2006a

5-90



 xPCGetSignalWidth

xPCGetSignalWidth
Return width of signal

Prototype
int xPCGetSignalWidth(int port, int sigIdx);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
sigIdx Enter the index of a signal.

Return

Returns the signal width for a signal with sigIdx. If the function detects an error, it
returns -1.

Description

The xPCGetSignalWidth function returns the number of signals for a specified signal
index. Although signals are manipulated as scalars, the width of the signal is useful to
reassemble the components into a vector again. The width of a signal is the number of
signals in the vector.

See Also

See Also
xPCGetSignalIdx | xPCGetSignalName | xPCGetSignal | xPCGetSignals

Introduced before R2006a

5-91



5 Simulink Real-Time API Reference for C

xPCGetStateLog

Copy state log values to array

Prototype

void xPCGetStateLog(int port, int first_sample, int num_samples,

int decimation, int state_id, double *state_data);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
first_sample Enter the index of the first sample to copy.
num_samples Enter the number of samples that the function is to copy from the

output log.
decimation Select whether to copy all the sample values or every Nth value.
state_id Enter a state identification number.
state_data The log is stored in state_data, whose allocation is the

responsibility of the caller.

Description

The xPCGetStateLog function gets the state log. It then copies the log into
state_data. You get the data for each state signal in turn by specifying the state_id.
State IDs range from 1 to (N-1), where N is the return value of xPCGetNumStates.
Entering 1 for decimation copies all values. Entering N copies every Nth value. For
first_sample, the sample indices range from 0 to (N-1), where N is the return value of
xPCNumLogSamples. Use the xPCNumLogSamples function to get the maximum number
of samples.

The real-time application must be stopped before you get the number.

5-92



 xPCGetStateLog

See Also

See Also
xPCNumLogWraps | xPCNumLogSamples | xPCMaxLogSamples | xPCGetNumStates |
xPCGetOutputLog | xPCGetTETLog | xPCGetTimeLog | Real-Time Application

Introduced before R2006a

5-93



5 Simulink Real-Time API Reference for C

xPCGetStopTime
Return stop time

Prototype
double xPCGetStopTime(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the stop time as a double, in seconds, of the real-time application. If the function
detects an error, it returns -10.0. If the stop time is infinity (run forever), this function
returns -1.0.

Description

The xPCGetStopTime function returns the amount of time, in seconds, that the real-
time application runs before stopping. If the function detects an error, it returns -10.0.
Use the function xPCGetLastError to find the error number.

See Also

See Also
xPCSetStopTime | Real-Time Application

Introduced before R2006a

5-94



 xPCGetTargetVersion

xPCGetTargetVersion
Get Simulink Real-Time kernel version

Prototype
void xPCGetTargetVersion(int port, char *ver);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
ver The version is stored in ver.

Description

The xPCGetTargetVersion function gets a character string with the version number
of the Simulink Real-Time kernel on the target computer. It then copies that version
number into ver.

See Also

See Also
xPCGetAPIVersion

Introduced in R2007a

5-95



5 Simulink Real-Time API Reference for C

xPCGetTETLog

Copy TET log to array

Prototype

void xPCGetTETLog(int port, int first_sample,

int num_samples, int decimation,

double *TET_data);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
first_sample Enter the index of the first sample to copy.
num_samples Enter the number of samples that the function is to copy from the

TET log.
decimation Select whether to copy all the sample values or every Nth value.
TET_data The log is stored in TET_data, whose allocation is the

responsibility of the caller.

Description

The xPCGetTETLog function gets the task execution time (TET) log. It then copies the
log into TET_data. Entering 1 for decimation copies all values. Entering N copies every
Nth value. For first_sample, the sample indices range from 0 to (N-1), where N is the
return value of xPCNumLogSamples. Use the xPCNumLogSamples function to get the
maximum number of samples.

The real-time application must be stopped before you get the number.

5-96



 xPCGetTETLog

See Also

See Also
xPCNumLogWraps | xPCNumLogSamples | xPCMaxLogSamples | xPCGetNumOutputs
| xPCGetStateLog | xPCGetTimeLog | Real-Time Application

Introduced before R2006a

5-97



5 Simulink Real-Time API Reference for C

xPCGetTimeLog

Copy time log to array

Prototype

void xPCGetTimeLog(int port, int first_sample, int num_samples, 

int decimation, double *time_data);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
first_sample Enter the index of the first sample to copy.
num_samples Enter the number of samples that the function is to copy from

the time log.
decimation Select whether to copy all the sample values or every Nth value.
time_data The log is stored in time_data, whose allocation is the

responsibility of the caller.

Description

The xPCGetTimeLog function gets the time log and copies the log into time_data.
This function is especially useful in the case of value-equidistant logging, where the
logged values are not necessarily spaced uniformly in time. Entering 1 for decimation
copies all values. Entering N copies every Nth value. For first_sample, the sample
indices range from 0 to (N-1), where N is the return value of xPCNumLogSamples. Use the
xPCNumLogSamples function to get the number of samples.

The real-time application must be stopped before you get the number.

5-98



 xPCGetTimeLog

See Also

See Also
xPCGetLogMode | xPCSetLogMode | xPCGetTETLog | xPCGetStateLog |
xPCMaxLogSamples | xPCNumLogSamples | xPCNumLogWraps | Real-Time
Application

Introduced before R2006a

5-99



5 Simulink Real-Time API Reference for C

xPCInitAPI
Initialize Simulink Real-Time DLL

Prototype
int xPCInitAPI(void);

Return

If the function completes execution without detecting an error, it returns 0. If the
function detects an error, it returns -1.

Description

The xPCInitAPI function initializes the Simulink Real-Time dynamic link library. To
load the Simulink Real-Time API DLL, execute xPCInitAPI once at the beginning of the
custom program. This function is defined in the file xpcinitfree.c. Link this file with
your program.

See Also

See Also
xPCFreeAPI | xPCNumLogWraps | xPCNumLogSamples | xPCMaxLogSamples |
xPCGetStateLog | xPCGetTETLog | xPCSetLogMode | xPCGetLogMode

Introduced before R2006a

5-100



 xPCIsAppRunning

xPCIsAppRunning
Return real-time application running status

Prototype
int xPCIsAppRunning(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

If the real-time application is stopped, the xPCIsAppRunning function returns 0. If the
real-time application is running, this function returns 1. If the function detects an error,
it returns -1.

Description

The xPCIsAppRunning function returns 1 or 0 depending on whether the real-time
application is stopped or running. If the function detects is an error, use the function
xPCGetLastError to check for the error character string constant.

See Also

See Also
xPCIsOverloaded | Real-Time Application Properties

Introduced before R2006a

5-101



5 Simulink Real-Time API Reference for C

xPCIsOverloaded
Return target computer overload status

Prototype
int xPCIsOverloaded(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

If the real-time application has overloaded the CPU, the xPCIsOverloaded function
returns 1. If it has not overloaded the CPU, the function returns 0. If this function
detects error, it returns -1.

Description

The xPCIsOverloaded function checks if the real-time application has overloaded the
target computer and returns 1 if it has and 0 if it has not. If the real-time application is
not running, the function returns 0.

See Also

See Also
xPCIsAppRunning | Real-Time Application

Introduced before R2006a

5-102



 xPCIsScFinished

xPCIsScFinished
Return data acquisition status for scope

Prototype
int xPCIsScFinished(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

If a scope finishes a data acquisition cycle, the function returns 1. If the scope is in the
process of acquiring data, it returns 0. If the function detects an error, it returns -1.

Description

The xPCIsScFinished function returns a Boolean value depending on whether scope
scNum is finished (state of SCST_FINISHED) or not. Use the xPCGetScope function to
get the scope number.

You can call this function for target scopes; however, because target scopes restart
immediately, it is almost impossible to find them in the finished state.

See Also

See Also
xPCScGetState | Real-Time Target Scope | Real-Time File Scope | Real-Time Host
Scope

5-103



5 Simulink Real-Time API Reference for C

Introduced before R2006a

5-104



 xPCLoadApp

xPCLoadApp
Load real-time application onto target computer

Prototype
void xPCLoadApp(int port, const char *pathstr,  

const char *filename);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
pathstr Enter the full path to the real-time application file, excluding the file

name. For example, in C, use a character string like "C:\\work".
filename Enter the name of a compiled real-time application without the file

extension. For example, in C use a character string like "xpcosc".

Description

The xPCLoadApp function loads the compiled real-time application to the target
computer. pathstr must not contain the trailing backslash. If the real-time application
is in the current folder, you can set pathstr to NULL or to the character string
'nopath'. The variable filename must not contain the real-time application extension.

See Also

See Also
xPCGetLoadTimeOut | xPCSetLoadTimeOut | xPCUnloadApp | xPCStopApp |
xPCStartApp | Real-Time Application

Introduced before R2006a

5-105



5 Simulink Real-Time API Reference for C

xPCLoadParamSet
Restore parameter values

Prototype
void xPCLoadParamSet(int port, const char *filename);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
filename Enter the name of the file that contains the saved parameters.

Description

The xPCLoadParamSet function restores the real-time application parameter values
saved in the file filename. This file must be on a local drive of the target computer. The
parameter file must have been saved from a previous call to xPCSaveParamSet.

See Also

See Also
xPCSaveParamSet

Introduced before R2006a

5-106



 xPCMaxLogSamples

xPCMaxLogSamples
Return maximum number of samples that can be in log buffer

Prototype
int xPCMaxLogSamples(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the total number of samples. If the function detects an error, it returns -1.

Description

The xPCMaxLogSamples function returns the total number of samples that can be
returned in the logging buffers.

See Also

See Also
xPCGetTimeLog | xPCGetTETLog | xPCGetOutputLog | xPCGetStateLog |
xPCNumLogWraps | xPCNumLogSamples | Real-Time Application

Introduced before R2006a

5-107



5 Simulink Real-Time API Reference for C

xPCMaximumTET
Copy maximum task execution time to array

Prototype
void xPCMaximumTET(int port, double *data);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
data Array of at least two doubles.

Description

The xPCMaximumTET function gets the maximum task execution time (TET) that was
achieved during the previous real-time application run. This function also returns the
time at which the maximum TET was achieved. The xPCMaximumTET function then
copies these values into the data array. The maximum TET value is copied into the first
element, and the time at which it was achieved is copied into the second element.

Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step. For a multirate model, use the profiler to find out what the execution time is
for each rate.

See Also

See Also
xPCAverageTET | xPCMinimumTET | Real-Time Application

Introduced before R2006a

5-108



 xPCMinimumTET

xPCMinimumTET
Copy minimum task execution time to array

Prototype
void xPCMinimumTET(int port, double *data);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
data Array of at least two doubles.

Description

The xPCMinimumTET function gets the minimum task execution time (TET) that was
achieved during the previous real-time application run. This function also returns the
time at which the minimum TET was achieved. The xPCMinimumTET function then
copies these values into the data array. The minimum TET value is copied into the first
element, and the time at which it was achieved is copied into the second element.

Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step. For a multirate model, use the profiler to find out what the execution time is
for each rate.

See Also

See Also
xPCAverageTET | xPCMaximumTET | xPCIsAppRunning | Real-Time Application

Introduced before R2006a

5-109



5 Simulink Real-Time API Reference for C

xPCNumLogSamples
Return number of samples in log buffer

Prototype
int xPCNumLogSamples(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the number of samples in the log buffer. If the function detects an error, it
returns -1.

Description

The xPCNumLogSamples function returns the number of samples in the log buffer.
In contrast to xPCMaxLogSamples, which returns the maximum number of samples
that can be logged (because of buffer size constraints), xPCNumLogSamples returns the
number of samples logged.

The real-time application must be stopped before you get the number.

See Also

See Also
xPCGetStateLog | xPCGetOutputLog | xPCGetTETLog | xPCGetTimeLog |
xPCMaxLogSamples

Introduced before R2006a

5-110



 xPCNumLogWraps

xPCNumLogWraps
Return number of times log buffer wraps

Prototype
int xPCNumLogWraps(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

Returns the number of times the log buffer wraps. If the function detects an error, it
returns -1.

Description

The xPCNumLogWraps function returns the number of times the log buffer wraps.

See Also

See Also
xPCGetTimeLog | xPCGetTETLog | xPCGetOutputLog | xPCGetStateLog |
xPCMaxLogSamples | xPCNumLogSamples | Real-Time Application

Introduced before R2006a

5-111



5 Simulink Real-Time API Reference for C

xPCOpenConnection
Open connection to target computer

Prototype
void xPCOpenConnection(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Description

The xPCOpenConnection function opens a connection to the target computer
represented by port. Before calling this function, set up the target information by
calling xPCRegisterTarget. A call to xPCOpenTcpIpPort can also set up the target
information. If the port is already open, calling this function has no effect.

See Also

See Also
xPCOpenTcpIpPort | xPCClosePort | xPCReOpenPort | xPCTargetPing |
xPCCloseConnection | xPCRegisterTarget

Introduced before R2006a

5-112



 xPCOpenTcpIpPort

xPCOpenTcpIpPort
Open TCP/IP connection to Simulink Real-Time system

Prototype
int xPCOpenTcpIpPort(const char *ipAddress, const char 

*ipPort);

Arguments

ipAddress Enter the IP address of the target as a dotted decimal character
string. For example, "192.168.0.10".

ipPort Enter the associated IP port as a character string. For example,
"22222".

Return

Returns a nonnegative integer that you can then use as the port value for a Simulink
Real-Time API function that requires it. If this operation fails, this function returns -1.

Description

The xPCOpenTcpIpPort function opens a connection to the TCP/IP location specified
by the IP address. If xPCOpenTcpIpPort succeeds, it returns a nonnegative integer.
Use this integer as the ipPort variable in the Simulink Real-Time API functions
that require a port value. The global error number is also set, which you can get using
xPCGetLastError.

See Also

See Also
xPCClosePort | xPCReOpenPort | xPCTargetPing

5-113



5 Simulink Real-Time API Reference for C

Introduced before R2006a

5-114



 xPCReboot

xPCReboot
Restart target computer

Prototype
void xPCReboot(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Description

The xPCReboot function restarts the target computer. xPCReboot returns nothing. This
function does not close the connection to the target computer. After the target computer
restarts, either explicitly close the port or call xPCReOpenPort.

See Also

See Also
xPCReOpenPort | Real-Time Application

Introduced before R2006a

5-115



5 Simulink Real-Time API Reference for C

xPCReOpenPort
Reopen communication channel

Prototype
int xPCReOpenPort(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

If the function reopens a connection without detecting an error, it returns 0. If it detects
an error, it returns -1.

Description

The xPCReOpenPort function reopens the communications channel pointed to by port.
The difference between this function and xPCOpenTcpIpPort is that xPCReOpenPort
uses the existing settings, while the other functions first set up the port.

See Also

See Also
xPCOpenTcpIpPort | xPCClosePort

Introduced before R2006a

5-116



 xPCRegisterTarget

xPCRegisterTarget
Register target with Simulink Real-Time API library

Prototype
int xPCRegisterTarget(int commType, const char *ipAddress, 

const char *ipPort, int comPort, int baudRate);

Arguments

commType Specify the communication type between the development and target
computers. The only value supported is COMMTYP_TCPIP.

Note: RS-232 communication type has been removed. Configure TCP/IP
communication instead.

ipAddress Enter the IP address of the target as a dotted decimal character string.
For example, "192.168.0.10".

ipPort Enter the associated IP port as a character string. For example, "22222".

Return

When called with TCP/IP parameters, the function returns the port number. If the
function detects an error, it returns -1.

When called with RS-232 parameters, the function returns -1 and sets error status
EINVCOMMTYP.

Description

The xPCRegisterTarget function works similarly to xPCOpenTcpIpPort, except
that it does not try to open a connection to the target computer. In other words, calling

5-117



5 Simulink Real-Time API Reference for C

xPCOpenTcpIpPort is equivalent to calling xPCRegisterTarget with the required
parameters, followed by a call to xPCOpenConnection.

Use the constant COMMTYP_TCPIP for commType. The function ignores comPort and
baudRate.

See Also

See Also
xPCDeRegisterTarget | xPCOpenTcpIpPort | xPCClosePort | xPCReOpenPort |
xPCOpenConnection | xPCCloseConnection | xPCTargetPing

Introduced before R2006a

5-118



 xPCRemScope

xPCRemScope
Remove scope

Prototype
void xPCRemScope(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Description

The xPCRemScope function removes the scope with number scNum. Attempting
to remove a nonexistent scope causes an error. For a list of existing scopes, see
xPCGetScopes. Use the xPCGetScope function to get the scope number.

See Also

See Also
xPCGetScopes | xPCScRemSignal | xPCAddScope | Real-Time Application

Introduced before R2006a

5-119



5 Simulink Real-Time API Reference for C

xPCSaveParamSet
Save parameter values of real-time application

Prototype
void xPCSaveParamSet(int port, const char *filename);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
filename Enter the name of the file that contains the saved parameters.

Description

The xPCSaveParamSet function saves the real-time application parameter values in
the file filename. This function saves the file on a local drive of the current target
computer. You can later reload these parameters with the xPCLoadParamSet function.

If you change parameter values while the application is running in Real-Time mode,
save your real-time application parameter values. By using the saved values, you can
recreate real-time application parameter settings from various runs.

See Also

See Also
xPCLoadParamSet

Introduced before R2006a

5-120



 xPCScAddSignal

xPCScAddSignal
Add signal to scope

Prototype
void xPCScAddSignal(int port, int scNum, int sigNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
sigNum Enter a signal number.

Description

The xPCScAddSignal function adds the signal with number sigNum to scope scNum.
The signal cannot exist in the scope. You can use xPCScGetSignals to get a list of the
signals already present. Use the function xPCGetScope to get the scope number. Use the
xPCGetSignalIdx function to get the signal number.

See Also

See Also
xPCScRemSignal | Real-Time Target Scope | Real-Time File Scope | Real-Time Host
Scope

Introduced before R2006a

5-121



5 Simulink Real-Time API Reference for C

xPCScGetAutoRestart
Scope autorestart status

Prototype
long xPCScGetAutoRestart(int port, int scNum)

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the autorestart flag value of scope scNum. If the function detects an error, it
returns -1.

Description

The xPCScGetAutoRestart function gets the autorestart flag value for scope scNum.
Autorestart flag can be disabled (0) or enabled (1).

See Also

See Also
xPCScSetAutoRestart

Introduced in R2009b

5-122



 xPCScGetData

xPCScGetData

Copy scope data to array

Prototype

void xPCScGetData(int port, int scNum, int signal_id, int start,  

int numsamples, int decimation, double *data);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
signal_id Enter a signal number. Enter -1 to get timestamped data.
start Enter the first sample from which data retrieval is to start.
numsamples Enter the number of samples retrieved with a decimation of

decimation, starting from the start value.
decimation Enter a value such that every decimation sample is retrieved in

a scope window.
data The data is available in the array data, starting from sample

start.

Description

The xPCScGetData function gets the data used in a scope. Use this function for scopes
of type SCTYPE_HOST. The scope must be either in state "Finished" or in state
"Interrupted" for the data to be retrievable. (Use the xPCScGetState function to
check the state of the scope.) The data must be retrieved one signal at a time. The calling
function must allocate the space ahead of time to store the scope data. data must be
an array of doubles, regardless of the data type of the signal to be retrieved. Use the
function xPCScGetSignals to get the list of signals in the scope for signal_id. Use the
function xPCGetScope to get the scope number for scNum.

5-123



5 Simulink Real-Time API Reference for C

To get timestamped data, specify -1 for signal_id. From the output, you can then get
the number of nonzero elements.

See Also

See Also
xPCGetScope | xPCScGetState | xPCScGetSignals | xPCScSetDecimation | Real-
Time Host Scope

Introduced before R2006a

5-124



 xPCScGetDecimation

xPCScGetDecimation
Return decimation of scope

Prototype
int xPCScGetDecimation(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the decimation of scope scNum. If the function detects an error, it returns -1.

Description

The xPCScGetDecimation function gets the decimation of scope scNum. The decimation
is a number, N, meaning every Nth sample is acquired in a scope window. Use the
xPCGetScope function to get the scope number.

See Also

See Also
xPCScSetDecimation | Real-Time Host Scope | Real-Time File Scope | Real-Time
Target Scope

Introduced before R2006a

5-125



5 Simulink Real-Time API Reference for C

xPCScGetNumPrePostSamples
Get number of pre- or post-triggering samples before triggering scope

Prototype
int xPCScGetNumPrePostSamples(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the number of samples for pre- or posttriggering for scope scNum. If an error
occurs, this function returns the minimum integer value (-2147483647-1).

Description

The xPCScGetNumPrePostSamples function gets the number of samples for pre- or
posttriggering for scope scNum. A negative number implies pretriggering, whereas a
positive number implies posttriggering samples. Use the xPCGetScope function to get
the scope number.

See Also

See Also
xPCScSetNumPrePostSamples | Real-Time Host Scope | Real-Time File Scope | Real-
Time Target Scope

Introduced before R2006a

5-126



 xPCScGetNumSamples

xPCScGetNumSamples
Get number of samples in one data acquisition cycle

Prototype
int xPCScGetNumSamples(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the number of samples in the scope scNum. If the function detects an error, it
returns -1.

Description

The xPCScGetNumSamples function gets the number of samples in one data acquisition
cycle for scope scNum. Use the xPCGetScope function to get the scope number.

See Also

See Also
xPCScSetNumSamples | Real-Time Target Scope | Real-Time File Scope | Real-Time
Host Scope

Introduced before R2006a

5-127



5 Simulink Real-Time API Reference for C

xPCScGetNumSignals
Get number of signals in scope

Prototype
int xPCScGetNumSignals(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the number of signals in the scope scNum. If the function detects an error, it
returns -1.

Description

The xPCScGetNumSignals function gets the number of signals in the scope scNum. Use
the xPCGetScope function to get the scope number.

See Also

See Also
xPCGetScope | Real-Time Target Scope | Real-Time File Scope | Real-Time Host Scope

Introduced in R2008b

5-128



 xPCScGetSignalList

xPCScGetSignalList
Copy list of signals to array

Prototype
void xPCScGetSignalList(int port, int scNum, int *data)

Arguments

port Value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
data Integer array allocated by the caller as a list containing the signal

identifiers.

Description

The xPCScGetSignals function gets the list of signals defined for scope scNum. The
array data must be large enough to hold the list of signals. To query the size, use
the xPCScGetNumSignals function. Use the xPCGetScope function to get the scope
number.

Note: Use the xPCScGetSignalList function instead of the xPCScGetSignals
function. The xPCScGetSignals will be removed in a future release.

Introduced in R2008b

5-129



5 Simulink Real-Time API Reference for C

xPCScGetSignals
Copy list of signals to array

Prototype
void xPCScGetSignals(int port, int scNum, int *data);

Arguments

port Value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
data Integer array allocated by the caller as a list containing the signal

identifiers, terminated by -1.

Description

The xPCScGetSignals function gets the list of signals defined for scope scNum. You can
use the constant MAX_SIGNALS, defined in xpcapiconst.h, as the size of data. Use the
xPCGetScope function to get the scope number.

Note: This function will be removed in a future release. Use the xPCScGetSignalList
function instead.

See Also

See Also
xPCScGetData | xPCGetScopes | Real-Time File Scope | Real-Time Host Scope |
Real-Time Target Scope

Introduced before R2006a

5-130



 xPCScGetStartTime

xPCScGetStartTime
Get start time for last data acquisition cycle

Prototype
double xPCScGetStartTime(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the start time for the last data acquisition cycle of a scope. If the function detects
an error, it returns -1.

Description

The xPCScGetStartTime function gets the time at which the last data acquisition
cycle for scope scNum started. xPCScGetStartTime is only valid for scopes of type
SCTYPE_HOST. Use the xPCGetScope function to get the scope number.

See Also

See Also
xPCGetScope | Real-Time Target Scope | Real-Time File Scope | Real-Time Host Scope

Introduced before R2006a

5-131



5 Simulink Real-Time API Reference for C

xPCScGetState
Get state of scope

Prototype
int xPCScGetState(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the state of scope scNum. If the function detects an error, it returns -1.

Description

The xPCScGetState function gets the state of scope scNum, or -1 upon error. Use the
xPCGetScope function to get the scope number.

Constants to find the scope state, defined in xpcapiconst.h, have the following
meanings:

Constant Value Description

SCST_WAITTOSTART 0 Scope is ready and waiting to start.
SCST_PREACQUIRING 5 Scope acquires a predefined number of samples

before triggering.
SCST_WAITFORTRIG 1 After a scope is finished with the preacquiring

state, it waits for a trigger. If the scope does not
preacquire data, it enters the wait for trigger
state.

5-132



 xPCScGetState

Constant Value Description

SCST_ACQUIRING 2 Scope is acquiring data. The scope enters this
state when it leaves the wait for trigger state.

SCST_FINISHED 3 Scope is finished acquiring data when it has
attained the predefined limit.

SCST_INTERRUPTED 4 You stopped (interrupted) the scope.

See Also

See Also
xPCScStop | xPCScStart | Real-Time File Scope | Real-Time Host Scope | Real-Time
Target Scope

Introduced before R2006a

5-133



5 Simulink Real-Time API Reference for C

xPCScGetTriggerLevel
Get trigger level for scope

Prototype
double xPCScGetTriggerLevel(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the scope trigger level. If the function detects an error, it returns -1.

Description

The xPCScGetTriggerLevel function gets the trigger level for scope scNum. Use the
xPCGetScope function to get the scope number.

See Also

See Also
xPCGetScope | xPCScGetTriggerMode | xPCScSetTriggerMode |
xPCScGetTriggerScope | xPCScSetTriggerScope | xPCScGetTriggerSignal |
xPCScSetTriggerSignal | xPCScGetTriggerSlope | xPCScSetTriggerSlope |
xPCScSetTriggerLevel | Real-Time File Scope | Real-Time Host Scope | Real-Time
Target Scope

Introduced before R2006a

5-134



 xPCScGetTriggerMode

xPCScGetTriggerMode
Get trigger mode for scope

Prototype
int xPCScGetTriggerMode(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the scope trigger mode. If the function detects an error, it returns -1.

Description

The xPCScGetTriggerMode function gets the trigger mode for scope scNum. Use
the xPCGetScope function to get the scope number. Use the constants defined in
xpcapiconst.h to interpret the trigger mode. These constants include the following:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The scope
triggers when it is ready to trigger,
regardless of the circumstances.

TRIGMD_SOFTWARE 1 Only user intervention can trigger the
scope. No other triggering is possible.

TRIGMD_SIGNAL 2 The scope is triggered only after a signal
has crossed a value.

5-135



5 Simulink Real-Time API Reference for C

Constant Value Description

TRIGMD_SCOPE 3 Another scope triggers this scope at
the trigger point of the triggering
scope, modified by the value
of triggerscopesample (see
scopedata).

See Also

See Also
xPCScSetTriggerMode | xPCScGetTriggerScope | xPCScSetTriggerScope |
xPCScGetTriggerSignal | xPCScSetTriggerSignal | xPCScGetTriggerSlope
| xPCScSetTriggerSlope | xPCScGetTriggerLevel | xPCScSetTriggerLevel |
xPCGetScope | Real-Time File Scope | Real-Time Host Scope | Real-Time Target Scope

Introduced before R2006a

5-136



 xPCScGetTriggerScope

xPCScGetTriggerScope
Get trigger scope

Prototype
int xPCScGetTriggerScope(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns a trigger scope. If the function detects an error, it returns -1.

Description

The xPCScGetTriggerScope function gets the trigger scope for scope scNum. Use the
xPCGetScope function to get the scope number.

See Also

See Also
xPCScGetTriggerMode | xPCScSetTriggerMode | xPCScGetTriggerSignal |
xPCScSetTriggerSignal | xPCScGetTriggerSlope | xPCScSetTriggerSlope
| xPCScGetTriggerLevel | xPCScSetTriggerLevel | xPCGetScope | Real-Time
Host Scope | Real-Time File Scope | Real-Time Target Scope

Introduced before R2006a

5-137



5 Simulink Real-Time API Reference for C

xPCScGetTriggerScopeSample
Get sample number for triggering scope

Prototype
int xPCScGetTriggerScopeSample(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

If the function acquires a real sample, it returns a nonnegative integer. If the triggering
scope triggers at the end of the data acquisition cycle, the function returns -1. If the
function detects an error, it returns INT_MIN (-2147483647-1).

Description

The xPCScGetTriggerScopeSample function gets the number of samples a triggering
scope (scNum) acquires before starting data acquisition on a second scope. Use the
xPCGetScope function to get the scope number for the trigger scope.

See Also

See Also
xPCScSetTriggerScopeSample | xPCScGetTriggerMode | xPCScSetTriggerMode
| xPCScGetTriggerScope | xPCScSetTriggerScope | xPCScGetTriggerSignal
| xPCScSetTriggerSignal | xPCScGetTriggerSlope | xPCScSetTriggerSlope

5-138



 xPCScGetTriggerScopeSample

| xPCScGetTriggerLevel | xPCScSetTriggerLevel | xPCGetScope | Real-Time
Host Scope | Real-Time File Scope | Real-Time Target Scope

Introduced before R2006a

5-139



5 Simulink Real-Time API Reference for C

xPCScGetTriggerSignal
Get trigger signal for scope

Prototype
int xPCScGetTriggerSignal(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the scope trigger signal. If the function detects an error, it returns -1.

Description

The xPCScGetTriggerSignal function gets the trigger signal for scope scNum. Use the
xPCGetScope function to get the scope number for the trigger scope.

See Also

See Also
xPCScGetTriggerMode | xPCScSetTriggerMode | xPCScGetTriggerScope |
xPCScSetTriggerScope | xPCScSetTriggerSignal | xPCScGetTriggerSlope |
xPCScSetTriggerSlope | xPCScGetTriggerLevel | xPCScSetTriggerLevel |
xPCGetScope | Real-Time Host Scope | Real-Time File Scope | Real-Time Target Scope

Introduced before R2006a

5-140



 xPCScGetTriggerSlope

xPCScGetTriggerSlope
Get trigger slope for scope

Prototype
int xPCScGetTriggerSlope(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the scope trigger slope. If the function detects an error, it returns -1.

Description

The xPCScGetTriggerSlope function gets the trigger slope of scope scNum. Use the
xPCGetScope function to get the scope number for the trigger scope. Use the constants
defined in xpcapiconst.h to interpret the trigger slope. These constants have the
following meanings:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either rising or
falling.

TRIGSLOPE_RISING 1 The trigger slope must be rising when
the signal crosses the trigger value.

TRIGSLOPE_FALLING 2 The trigger slope must be falling when
the signal crosses the trigger value.

5-141



5 Simulink Real-Time API Reference for C

See Also

See Also
xPCScGetTriggerMode | xPCScSetTriggerMode | xPCScGetTriggerScope |
xPCScSetTriggerScope | xPCScGetTriggerSignal | xPCScSetTriggerSignal
| xPCScSetTriggerSlope | xPCScGetTriggerLevel | xPCScSetTriggerLevel |
xPCGetScope | Real-Time Host Scope | Real-Time File Scope | Real-Time Target Scope

Introduced before R2006a

5-142



 xPCScGetType

xPCScGetType
Get type of scope

Prototype
int xPCScGetType(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the scope type. If the function detects an error, it returns -1.

Description

The xPCScGetType function gets the type (SCTYPE_HOST for host, SCTYPE_TARGET
for target, or SCTYPE_FILE for file) of scope scNum. Use the constants defined in
xpcapiconst.h to interpret the return value. A scope of type SCTYPE_HOST is displayed
on the development computer while a scope of type SCTYPE_TARGET is displayed on the
target computer screen. A scope of type SCTYPE_FILE is stored on a storage medium.
Use the xPCGetScope function to get the scope number.

See Also

See Also
xPCGetScope | Real-Time Target Scope | Real-Time File Scope | Real-Time Host Scope

Introduced before R2006a

5-143



5 Simulink Real-Time API Reference for C

xPCScRemSignal
Remove signal from scope

Prototype
void xPCScRemSignal(int port, int scNum, int sigNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
sigNum Enter a signal number.

Description

The xPCScRemSignal function removes a signal from the scope with number scNum.
The scope must exist, and signal number sigNum must exist in the scope. Use
xPCGetScopes to determine the existing scopes, and use xPCScGetSignals to
determine the existing signals for a scope. Use this function only when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number.

See Also

See Also
xPCScGetState | xPCScGetSignals | xPCGetScopes | xPCRemScope |
xPCAddScope | xPCScAddSignal | xPCGetScope | Real-Time Host Scope | Real-Time
File Scope | Real-Time Target Scope

Introduced before R2006a

5-144



 xPCScSetAutoRestart

xPCScSetAutoRestart
Scope autorestart status

Prototype
void xPCScSetAutoRestart(int port, int scNum, int autorestart)

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
autorestart To enable scope autorestart, enter 1. To disable scope

autorestart, enter 0).

Description

The xPCScSetAutoRestart function sets the autorestart flag for scope scNum to 0 or
1. The value 0 disables the flag, 1 enables it. Use this function only when the scope is
stopped.

See Also

See Also
xPCScGetAutoRestart | Real-Time Target Scope | Real-Time File Scope | Real-Time
Host Scope

Introduced in R2009b

5-145



5 Simulink Real-Time API Reference for C

xPCScSetDecimation
Set decimation of scope

Prototype
void xPCScSetDecimation(int port, int scNum, int decimation);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
decimation Enter an integer for the decimation.

Description

The xPCScSetDecimation function sets the decimation of scope scNum. The decimation
is a number, N, meaning every Nth sample is acquired in a scope window. Use this
function only when the scope is stopped. Use xPCScGetState to check the state of the
scope. Use the xPCGetScope function to get the scope number.

See Also

See Also
xPCScGetState | xPCScGetDecimation | xPCGetScope | Real-Time File Scope |
Real-Time Host Scope | Real-Time Target Scope

Introduced before R2006a

5-146



 xPCScSetNumPrePostSamples

xPCScSetNumPrePostSamples
Set number of pre- or posttriggering samples before triggering scope

Prototype
void xPCScSetNumPrePostSamples(int port, int scNum, int prepost);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
prepost A negative number means pretriggering, while a positive number

means posttriggering. This function can only be used when the
scope is stopped.

Description

The xPCScSetNumPrePostSamples function sets the number of samples for pre- or
posttriggering for scope scNum to prepost. Use this function only when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number.

See Also

See Also
xPCScGetState | xPCScGetNumPrePostSamples | xPCGetScope | Real-Time File
Scope | Real-Time Host Scope | Real-Time Target Scope

Introduced before R2006a

5-147



5 Simulink Real-Time API Reference for C

xPCScSetNumSamples

Set number of samples in one data acquisition cycle

Prototype

void xPCScSetNumSamples(int port, int scNum, int samples);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
samples Enter the number of samples you want to acquire in one cycle.

Description

The xPCScSetNumSamples function sets the number of samples for scope scNum to
samples. Use this function only when the scope is stopped. Use xPCScGetState to
check the state of the scope. Use the xPCGetScope function to get the scope number.

For file scopes, the NumSamples parameter works with the autorestart parameter.

• Autorestart is on — When the scope triggers, the scope starts collecting data into a
memory buffer. A background task examines the buffer and writes data to the disk
continuously, appending new data to the end of the file. When the scope reaches the
number of samples that you specified, it starts collecting data again, overwriting the
memory buffer. If the background task cannot keep pace with data collection, data can
be lost.

• Autorestart is off — When the scope triggers, the scope starts collecting data into
a memory buffer. It stops when it has collected the number of samples that you
specified. A background task examines the buffer and writes data to the disk
continuously, appending the new data to the end of the file.

5-148



 xPCScSetNumSamples

See Also

See Also
xPCScGetState | xPCScGetNumSamples | xPCGetScope | Real-Time File Scope |
Real-Time Host Scope | Real-Time Target Scope

Introduced before R2006a

5-149



5 Simulink Real-Time API Reference for C

xPCScSetTriggerLevel
Set trigger level for scope

Prototype
void xPCScSetTriggerLevel(int port, int scNum, double level);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
level Value for a signal to trigger data acquisition with a scope.

Description

The xPCScSetTriggerLevel function sets the trigger level to level for scope scNum.
Use this function only when the scope is stopped. Use xPCScGetState to check the
state of the scope. Use the xPCGetScope function to get the scope number for the trigger
scope.

See Also

See Also
xPCScGetTriggerSlope | xPCScSetTriggerSignal | xPCScGetTriggerSignal
| xPCScSetTriggerScope | xPCScGetTriggerScope | xPCScSetTriggerMode
| xPCScGetTriggerMode | xPCScGetState | xPCScSetTriggerSlope |
xPCScGetTriggerLevel | xPCGetScope | Real-Time Host Scope | Real-Time File
Scope | Real-Time Target Scope

Introduced before R2006a

5-150



 xPCScSetTriggerMode

xPCScSetTriggerMode
Set trigger mode of scope

Prototype
void xPCScSetTriggerMode(int port, int scNum, int mode);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
mode Trigger mode for a scope.

Description

The xPCScSetTriggerMode function sets the trigger mode of scope scNum to mode. Use
this function only when the scope is stopped. Use xPCScGetState to check the state of
the scope. Use the xPCGetScopes function to get a list of scopes.

Use the constants defined in xpcapiconst.h to interpret the trigger mode:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The scope triggers when it
is ready to trigger, regardless of the circumstances.
This mode is the default.

TRIGMD_SOFTWARE 1 Only user intervention can trigger the scope. No
other triggering is possible.

TRIGMD_SIGNAL 2 The scope is triggered only after a signal has crossed
a value.

TRIGMD_SCOPE 3 Another scope triggers this scope at the trigger point
of the triggering scope, modified by the value of
triggerscopesample (see scopedata).

5-151



5 Simulink Real-Time API Reference for C

See Also

See Also
xPCGetScopes | xPCScSetTriggerLevel | xPCScGetTriggerLevel |
xPCScSetTriggerSlope | xPCScGetTriggerSlope | xPCScSetTriggerSignal |
xPCScGetTriggerSignal | xPCScSetTriggerScope | xPCScGetTriggerScope |
xPCScGetTriggerMode | xPCScGetState | xPCGetScope | Real-Time Host Scope |
Real-Time File Scope | Real-Time Target Scope

Introduced before R2006a

5-152



 xPCScSetTriggerScope

xPCScSetTriggerScope
Select scope for triggering another scope

Prototype
void xPCScSetTriggerScope(int port, int scNum, int trigScope);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
trigScope Enter the scope number of the scope used for a trigger.

Description

The xPCScSetTriggerScope function sets the trigger scope of scope scNum
to trigScope. This function can only be used when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScopes function to get a
list of scopes.

The scope type can be SCTYPE_HOST, SCTYPE_TARGET, or SCTYPE_FILE.

See Also

See Also
xPCGetScopes | xPCScSetTriggerLevel | xPCScGetTriggerLevel |
xPCScSetTriggerSlope | xPCScGetTriggerSlope | xPCScSetTriggerSignal |
xPCScGetTriggerSignal | xPCScGetTriggerScope | xPCScSetTriggerMode |
xPCScGetTriggerMode | xPCScGetState | xPCGetScope | Real-Time Host Scope |
Real-Time File Scope | Real-Time Target Scope

Introduced before R2006a

5-153



5 Simulink Real-Time API Reference for C

xPCScSetTriggerScopeSample
Set sample number for triggering scope

Prototype
void xPCScSetTriggerScopeSample(int port, int scNum, int 

trigScSamp);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
trigScSamp Enter a nonnegative integer for the number of samples acquired by the

triggering scope before starting data acquisition on a second scope.

Description

The xPCScSetTriggerScopeSample function sets the number of samples
(trigScSamp) a triggering scope acquires before it triggers a second scope (scNum). Use
the xPCGetScopes function to get a list of scopes.

For meaningful results, set trigScSamp between -1 and (nSamp - 1). nSamp is the
number of samples in one data acquisition cycle for the triggering scope. If you specify too
large a value, the scope is never triggered.

If you want to trigger a second scope at the end of a data acquisition cycle for the
triggering scope, enter a value of -1 for trigScSamp.

See Also

See Also
xPCGetScopes | xPCScSetTriggerLevel | xPCScGetTriggerLevel |
xPCScSetTriggerSlope | xPCScGetTriggerSlope | xPCScSetTriggerSignal |

5-154



 xPCScSetTriggerScopeSample

xPCScGetTriggerSignal | xPCScSetTriggerScope | xPCScGetTriggerScope |
xPCScSetTriggerMode | xPCScGetTriggerMode | xPCScGetTriggerScopeSample
| xPCGetScope | Real-Time File Scope | Real-Time Host Scope | Real-Time Target
Scope

Introduced before R2006a

5-155



5 Simulink Real-Time API Reference for C

xPCScSetTriggerSignal
Select signal for triggering scope

Prototype
void xPCScSetTriggerSignal(int port, int scNum, int trigSig);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
trigSig Enter a signal number.

Description

The xPCScSetTriggerSignal function sets the trigger signal of scope scNum to
trigSig. The trigger signal trigSig must be one of the signals in the scope. Use this
function only when the scope is stopped. You can use xPCScGetSignals to get the list
of signals in the scope. Use xPCScGetState to check the state of the scope. Use the
xPCGetScopes function to get a list of scopes.

See Also

See Also
xPCGetScopes | xPCScGetState | xPCScSetTriggerLevel |
xPCScGetTriggerLevel | xPCScSetTriggerSlope | xPCScGetTriggerSlope |
xPCScGetTriggerSignal | xPCScSetTriggerScope | xPCScGetTriggerScope |
xPCScSetTriggerMode | xPCScGetTriggerMode | xPCGetScope | Real-Time Host
Scope | Real-Time File Scope | Real-Time Target Scope

Introduced before R2006a

5-156



 xPCScSetTriggerSlope

xPCScSetTriggerSlope

Set slope of signal that triggers scope

Prototype

void xPCScSetTriggerSlope(int port, int scNum, int trigSlope);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
trigSlope Enter the slope mode for the signal that triggers the scope.

Description

The xPCScSetTriggerSlope function sets the trigger slope of scope scNum to
trigSlope. Use this function only when the scope is stopped. Use xPCScGetState to
check the state of the scope. Use the xPCGetScopes function to get a list of scopes.

Use the constants defined in xpcapiconst.h to set the trigger slope:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either rising or
falling.

TRIGSLOPE_RISING 1 The trigger signal value must be rising when
it crosses the trigger value.

TRIGSLOPE_FALLING 2 The trigger signal value must be falling when
it crosses the trigger value.

5-157



5 Simulink Real-Time API Reference for C

See Also

See Also
xPCGetScopes | xPCScSetTriggerLevel | xPCScGetTriggerLevel |
xPCScGetTriggerSlope | xPCScSetTriggerSignal | xPCScGetTriggerSignal
| xPCScSetTriggerScope | xPCScGetTriggerScope | xPCScSetTriggerMode |
xPCScGetTriggerMode | xPCScGetState | xPCGetScope | Real-Time Host Scope |
Real-Time File Scope | Real-Time Target Scope

Introduced before R2006a

5-158



 xPCScSoftwareTrigger

xPCScSoftwareTrigger
Set software trigger of scope

Prototype
void xPCScSoftwareTrigger(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Description

The xPCScSoftwareTrigger function triggers scope scNum. The scope must be in the
state Waiting for trigger for this function to succeed. Use xPCScGetState to check
the state of the scope. Use the xPCGetScopes function to get a list of scopes.

Regardless of the trigger mode setting, you can use xPCScSoftwareTrigger to force a
trigger. In trigger mode Software, this function is the only way to trigger the scope.

See Also

See Also
xPCGetScopes | xPCScGetState | xPCIsScFinished | xPCGetScope | Real-Time
Host Scope | Real-Time File Scope | Real-Time Target Scope

Introduced before R2006a

5-159



5 Simulink Real-Time API Reference for C

xPCScStart
Start data acquisition for scope

Prototype
void xPCScStart(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Description

The xPCScStart function starts or restarts the data acquisition of scope scNum. If the
scope does not have to preacquire samples, it enters the Waiting for Trigger state.
The scope must be in state Waiting to Start, Finished, or Interrupted for this
function to succeed. To check the state of the scope, call xPCScGetState. For host scopes
that are already started, call xPCIsScFinished. Use the xPCGetScopes function to get
a list of scopes.

See Also

See Also
xPCGetScopes | xPCScGetState | xPCScStop | xPCIsScFinished | xPCGetScope
| Real-Time File Scope | Real-Time Host Scope | Real-Time Target Scope

Introduced before R2006a

5-160



 xPCScStop

xPCScStop
Stop data acquisition for scope

Prototype
void xPCScStop(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Description

The xPCScStop function stops the scope scNum and sets the scope to the
"Interrupted" state. The scope must be running for this function to succeed. Use
xPCScGetState to determine the state of the scope. Use the xPCGetScopes function to
get a list of scopes.

See Also

See Also
xPCGetScopes | xPCScStart | xPCScGetState | xPCGetScope | Real-Time Host
Scope | Real-Time File Scope | Real-Time Target Scope

Introduced before R2006a

5-161



5 Simulink Real-Time API Reference for C

xPCSetEcho
Turn message display on or off

Prototype
void xPCSetEcho(int port, int mode);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
mode Valid values are
  0 Turns off the display
  1 Turns on the display

Description

On the target computer screen, the xPCSetEcho function sets the message display
on the target computer on or off. You can change the mode only when the real-time
application is stopped. When you turn off the message display, the message screen no
longer updates. Existing messages remain on the screen as they were.

See Also

See Also
xPCGetEcho

Introduced before R2006a

5-162



 xPCSetLastError

xPCSetLastError
Set last error to specific character string constant

Prototype
void xPCSetLastError(int error);

Arguments

error Specify the character string constant for the error.

Description

The xPCSetLastError function sets the global error constant returned by
xPCGetLastError to error. This function is useful only to set the character string
constant to ENOERR, indicating no error was found.

See Also

See Also
xPCGetLastError | xPCErrorMsg

Introduced before R2006a

5-163



5 Simulink Real-Time API Reference for C

xPCSetLoadTimeOut
Change initialization timeout value between development and target computers

Prototype
void xPCSetLoadTimeOut(int port, int timeOut);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
timeOut Enter the new communication timeout value.

Description

The xPCSetLoadTimeOut function changes the timeout value for communication
between the development and target computers. The timeOut value is the time a
Simulink Real-Time API function waits for the communication to complete before
returning. It enables you to set the number of communication attempts to be made before
signaling a timeout.

See Also

See Also
xPCLoadApp | xPCGetLoadTimeOut | xPCUnloadApp | Real-Time Application

Introduced before R2006a

5-164



 xPCSetLogMode

xPCSetLogMode
Set logging mode and increment value of scope

Prototype
void xPCSetLogMode(int port, lgmode logging_data);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
logging_data Logging mode and increment value.

Description

The xPCSetLogMode function sets the logging mode and increment to the values set in
logging_data. See the structure lgmode for more details.

See Also

See Also
lgmode | xPCGetLogMode | Real-Time Application

Introduced before R2006a

5-165



5 Simulink Real-Time API Reference for C

xPCSetParam
Change value of parameter

Prototype
void xPCSetParam(int port, int paramIdx, const double *paramValue);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
paramIdx Parameter index.
paramValue Vector of doubles, assumed to be the size required by the

parameter type

Description

The xPCSetParam function sets the parameter paramIdx to the value in paramValue.
paramValue can contain a matrix represented as a vector in column-major format.
Although paramValue is a vector of doubles, the function converts the values to the
expected data types (using truncation) before setting them.

See Also

See Also
xPCGetParamDims | xPCGetParamIdx | xPCGetParam

Introduced before R2006a

5-166



 xPCSetSampleTime

xPCSetSampleTime
Change real-time application sample time

Prototype
void xPCSetSampleTime(int port, double ts);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
ts Sample time for the real-time application.

Description

The xPCSetSampleTime function sets the sample time, in seconds, of the real-time
application to ts. Use this function only when the application is stopped.

Note: Some blocks produce incorrect results when you change their sample time at run
time. If you include such blocks in your model, the software displays a warning message
during model build. To avoid incorrect results, change the sample time in the original
model, and then rebuild and download the model.

See Also

See Also
xPCGetSampleTime | Real-Time Application

Introduced before R2006a

5-167



5 Simulink Real-Time API Reference for C

xPCSetScope
Set properties of scope

Prototype
void xPCSetScope(int port, scopedata state);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
state Enter a structure of type scopedata.

Description

Note: The xPCSetScope function will be removed in a future release. Use the
xPCScSetScopePropertyName functions to access property values instead. For
example, to set the number of samples to acquire in one data acquisition cycle, use
xPCScSetNumSamples.

The xPCSetScope function sets the properties of a scope using a state structure of
type scopedata. Set the properties you want to set for the scope. You can set several
properties at the same time. For convenience, call the function xPCGetScope first to
populate the structure with the current values. You can then change the desired values.
Use this function only when the scope is stopped. Use xPCScGetState to determine the
state of the scope.

See Also

See Also
xPCGetScope | xPCScGetState | scopedata

5-168



 xPCSetScope

Introduced before R2006a

5-169



5 Simulink Real-Time API Reference for C

xPCSetStopTime
Change real-time application stop time

Prototype
void xPCSetStopTime(int port, double tfinal);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
tfinal Enter the stop time, in seconds.

Description

The xPCSetStopTime function sets the stop time of the real-time application to the
value in tfinal. The real-time application runs for this number of seconds before
stopping. Set tfinal to -1.0 to set the stop time to infinity.

See Also

See Also
xPCGetStopTime | Real-Time Application

Introduced before R2006a

5-170



 xPCStartApp

xPCStartApp
Start real-time application

Prototype
void xPCStartApp(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Description

The xPCStartApp function starts the real-time application loaded on the target
computer.

See Also

See Also
xPCStopApp | Real-Time Application

Introduced before R2006a

5-171



5 Simulink Real-Time API Reference for C

xPCStopApp
Stop real-time application

Prototype
void xPCStopApp(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Description

The xPCStopApp function stops the real-time application loaded on the target computer.
The real-time application remains loaded and the parameter changes you made remain
intact. If you want to stop and unload an application, use xPCUnloadApp.

See Also

See Also
xPCUnloadApp | xPCStartApp | Real-Time Application

Introduced before R2006a

5-172



 xPCTargetPing

xPCTargetPing

Ping target computer

Prototype

int xPCTargetPing(int port);

Arguments

port Enter the value returned by the function
xPCOpenTcpIpPort.

Return

If the target responds, the function returns 1. If the target computer does not respond,
the function returns 0. The function does not return an error status.

Description

The xPCTargetPing function pings the target computer and returns 1 or 0 depending
on whether the target responds or not. This function returns an error character string
constant only when there is an error in the input parameter. Such errors include an
invalid port number or the port is not open. Other errors, such as the inability to connect
to the target, are ignored.

xPCTargetPing causes the target computer to close the TCP/IP connection. You can use
xPCOpenConnection to reconnect. You can also use this xPCTargetPing feature to
close the target computer connection in the event of a failed connection. For example, if
the program running on your development computer has a fatal error and aborts its I/O
connection, you can close it.

5-173



5 Simulink Real-Time API Reference for C

See Also

See Also
xPCOpenConnection | xPCOpenTcpIpPort | xPCClosePort

Introduced in R2007a

5-174



 xPCTgScGetGrid

xPCTgScGetGrid

Get status of grid line for particular scope

Prototype

int xPCTgScGetGrid(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the status of the grid for a scope of type SCTYPE_TARGET. If the function detects
an error, it returns -1.

Description

The xPCTgScGetGrid function gets the state of the grid lines for scope scNum (which
must be of type SCTYPE_TARGET). A return value of 1 implies that the grid is on, while 0
implies that the grid is off. When the scope mode is set to SCMODE_NUMERICAL, the grid
is not drawn even when the grid mode is set to 1.

Tip:

• Use xPCTgScSetMode and xPCTgScGetMode to set and retrieve the scope mode.

• Use xPCGetScopes to get a list of scopes.

5-175



5 Simulink Real-Time API Reference for C

See Also

See Also
xPCGetScopes | xPCTgScSetGrid | xPCTgScSetViewMode | xPCTgScGetViewMode
| xPCTgScSetMode | xPCTgScGetMode | xPCTgScSetYLimits |
xPCTgScGetYLimits | Real-Time Target Scope

Introduced before R2006a

5-176



 xPCTgScGetMode

xPCTgScGetMode

Get scope mode for displaying signals

Prototype

int xPCTgScGetMode(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Return

Returns the value corresponding to the scope mode. The possible values are

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2 will be removed in a future release. It behaves like value
SCMODE_ROLLING = 3.

• SCMODE_ROLLING = 3

If this function detects an error, it returns -1.

Description

The xPCTgScGetMode function gets the mode of scope scNum, which must be of type
SCTYPE_TARGET. The mode is one of SCMODE_NUMERICAL, SCMODE_REDRAW, and
SCMODE_ROLLING. Use the xPCGetScopes function to get a list of scopes.

5-177



5 Simulink Real-Time API Reference for C

See Also

See Also
xPCGetScopes | xPCTgScSetGrid | xPCTgScGetGrid | xPCTgScSetViewMode
| xPCTgScGetViewMode | xPCTgScSetMode | xPCTgScSetYLimits |
xPCTgScGetYLimits | Real-Time Target Scope

Introduced before R2006a

5-178



 xPCTgScGetViewMode

xPCTgScGetViewMode
Get view mode for target computer display

Prototype
int xPCTgScGetViewMode(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Return

0.

Description

Note: xPCTgScGetViewMode has no function. It returns 0.

See Also

See Also
xPCGetScopes | xPCTgScSetGrid | xPCTgScGetGrid | xPCTgScSetViewMode |
xPCTgScSetMode | xPCTgScGetMode | xPCTgScSetYLimits | xPCTgScGetYLimits
| Real-Time Target Scope

Introduced before R2006a

5-179



5 Simulink Real-Time API Reference for C

xPCTgScGetYLimits
Copy y-axis limits for scope to array

Prototype
void xPCTgScGetYLimits(int port, int scNum, double *limits);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
limits The first element of the array is the lower limit while the second element

is the upper limit.

Description

The xPCTgScGetYLimits function gets and copies the upper and lower limits for a
scope of type SCTYPE_TARGET and with scope number scNum. The limits are stored
in the array limits. If both elements are zero, the limits are autoscaled. Use the
xPCGetScopes function to get a list of scopes.

See Also

See Also
xPCGetScopes | xPCTgScSetGrid | xPCTgScGetGrid | xPCTgScSetViewMode
| xPCTgScGetViewMode | xPCTgScSetMode | xPCTgScGetMode |
xPCTgScSetYLimits | Real-Time Target Scope

Introduced before R2006a

5-180



 xPCTgScSetGrid

xPCTgScSetGrid
Set grid mode for scope

Prototype
void xPCTgScSetGrid(int port, int scNum, int grid);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
grid Enter a grid value.

Description

The xPCTgScSetGrid function sets the grid of a scope of type SCTYPE_TARGET and
scope number scNum to grid. If grid is 0, the grid is off. If grid is 1, the grid is on and
grid lines are drawn on the scope window. When the drawing mode of scope scNum is set
to SCMODE_NUMERICAL, the grid is not drawn even when the grid mode is set to 1. Use
the xPCGetScopes function to get a list of scopes.

See Also

See Also
xPCGetScopes | xPCTgScGetGrid | xPCTgScSetViewMode | xPCTgScGetViewMode
| xPCTgScSetMode | xPCTgScGetMode | xPCTgScSetYLimits |
xPCTgScGetYLimits | Real-Time Target Scope

Introduced before R2006a

5-181



5 Simulink Real-Time API Reference for C

xPCTgScSetMode
Set display mode for scope

Prototype
void xPCTgScSetMode(int port, int scNum, int mode);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
mode Enter the value for the mode.

Description

The xPCTgScSetMode function sets the mode of a scope of type SCTYPE_TARGET and
scope number scNum to mode. You can use one of the following constants for mode:

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2 will be removed in a future release. It behaves like value
SCMODE_ROLLING = 3.

• SCMODE_ROLLING = 3

Use the xPCGetScopes function to get a list of scopes.

See Also

See Also
xPCGetScopes | xPCTgScSetGrid | xPCTgScGetGrid | xPCTgScSetViewMode
| xPCTgScGetViewMode | xPCTgScGetMode | xPCTgScSetYLimits |
xPCTgScGetYLimits | Real-Time Target Scope

5-182



 xPCTgScSetMode

Introduced before R2006a

5-183



5 Simulink Real-Time API Reference for C

xPCTgScSetViewMode
Set view mode for scope

Prototype
void xPCTgScSetViewMode(int port, int scNum);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.

Description

Note: xPCTgScSetViewMode has no function.

See Also

See Also
xPCGetScopes | xPCTgScSetGrid | xPCTgScGetGrid | xPCTgScGetViewMode |
xPCTgScSetMode | xPCTgScGetMode | xPCTgScSetYLimits | xPCTgScGetYLimits
| Real-Time Target Scope

Introduced before R2006a

5-184



 xPCTgScSetYLimits

xPCTgScSetYLimits
Set y-axis limits for scope

Prototype
void xPCTgScSetYLimits(int port, int scNum, const double *Ylimits);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.
scNum Enter the scope number.
Ylimits Enter a two-element array.

Description

The xPCTgScSetYLimits function sets the y-axis limits for a scope with scope number
scNum and type SCTYPE_TARGET to the values in the double array Ylimits. The first
element is the lower limit, and the second element is the upper limit. Set both limits to
0.0 to specify autoscaling. Use the xPCGetScopes function to get a list of scopes.

See Also

See Also
xPCGetScopes | xPCTgScSetGrid | xPCTgScGetGrid | xPCTgScSetViewMode
| xPCTgScGetViewMode | xPCTgScSetMode | xPCTgScGetMode |
xPCTgScGetYLimits | Real-Time Target Scope

Introduced before R2006a

5-185



5 Simulink Real-Time API Reference for C

xPCUnloadApp
Unload real-time application

Prototype
void xPCUnloadApp(int port);

Arguments

port Enter the value returned by the function xPCOpenTcpIpPort.

Description

The xPCUnloadApp function stops the current real-time application, removes it from
target computer memory, and prepares the target computer for receiving a new real-time
application. The function xPCLoadApp calls this function before loading a new real-time
application.

See Also

See Also
xPCLoadApp | Real-Time Application

Introduced before R2006a

5-186



6

MATLAB API



6 MATLAB API

fc422mexcalcbits

Calculate parameter values for Fastcom 422/2-PCI board

Syntax

[a,b] = fc422mexcalcbits(frequency)

[a,b,df] = fc422mexcalcbits(frequency)

Description

[a,b] = fc422mexcalcbits(frequency) accepts a baud and converts this value
into a vector containing values for the parameter Clocks Bits of the Fastcom® 422/2-PCI
driver clock. These values set the phase-locked-loop parameters for the board.

[a,b,df] = fc422mexcalcbits(frequency) accepts a baud and converts this value
into a vector containing the phase-locked-loop parameters for the board and the resulting
baud value.

Examples

Clock Bits Values

[a,b] = fc422mexcalcbits(30e3)

a =

     2111792

b =

    23

6-2



 fc422mexcalcbits

In the RS-232/RS-422/RS-485 Send/Receive (Composite) block parameters, Board Setup
tab, set Clock Bits to [2111792 23].

Clocks Bits Values with Actual Result

[a,b,df] = fc422mexcalcbits(1.49e6)

a =

     3805896

b =

    23

df =

   1.4901e+06

In the RS-232/RS-422/RS-485 Send/Receive (Composite) block parameters, Board Setup
tab, set Clock Bits to [3805896 23].

Input Arguments

frequency — Baud for the board, in symbols/second
positive-valued scalar

The baud must be between 30e3 and 1.5e6. This limitation is a physical limitation of
the clock circuit.
Example: 30e3

Data Types: double

Output Arguments

[a,b] — Values for driver block parameter
vector of scalars

6-3



6 MATLAB API

a,b – Values for the driver block parameter. These values set the phase-locked-loop
parameters for the board.

[a,b,df] — Values for driver block parameter and resulting baud value
vector of scalars

• a,b – Values for the driver block parameter. These values set the phase-locked-loop
parameters for the board.

• df – The actual baud value that the driver block parameter creates. The clock circuit
has limited resolution and is unable to match an arbitrary frequency perfectly.

See Also

See Also
RS-232/RS-422/RS-485 Send/Receive (Composite)

Introduced in R2014a

6-4



 macaddr

macaddr

Convert character vector-based MAC address to vector-based address

Syntax

macaddr(MAC_address)

Description

macaddr(MAC_address) converts a character vector-based MAC address to a vector-
based MAC address.

Examples

Simple

macaddr('01:23:45:67:89:ab')

ans =

    1   35   69  103  137  171

Input Arguments

MAC_address — MAC address to be converted
delimited character vector

The value is entered as a character vector comprised of six colon-delimited fields of two-
digit hexadecimal numbers.
Example: '01:23:45:67:89:ab'
Data Types: char

6-5



6 MATLAB API

See Also

See Also
“Model-Based Ethernet Communications”

Introduced in R2014a

6-6



 profile_slrt

profile_slrt
Collect profiling data

Syntax

profData = profile_slrt(profileInfo)

Description

profData = profile_slrt(profileInfo) collects and displays execution profiling
data from a target computer that is running a suitably configured real-time application.
By default, it displays an execution profile plot and a code execution profiling report.

Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step. For a multirate model, use the profiler to find out what the execution time is
for each rate.

To configure a model for execution profiling, check the Measure task execution time
option in the Verification tab of the Code Generation dialog box. If you also want to
profile function execution times, select the Measure function execution times check
box.

After setting these options, you must build, download, and run the real-time application
before calling profile_slrt.

Examples

Concurrent Execution Example

Profile the concurrent execution model dxpcmds6t using default settings on a multicore
target computer.

Configure model dxpcmds6t for profiling.

Build, download, and execute the model.

Profile the real-time application execution.

6-7



6 MATLAB API

profileInfo.modelname = 'dxpcmds6t.mdl';

profData = profile_slrt(profileInfo);

The Execution Profile plot shows the allocation of execution cycles across the four
processors, indicated by the colored horizontal bars.

The Code Execution Profiling Report displays model execution profile results for each
task.

6-8



 profile_slrt

6-9



6 MATLAB API

Profile Data Description

Maximum turnaround
time

Longest time between start and end of code section, which
includes preemption time.

Average turnaround time Average time between start and end of code section, which
includes preemption time.

Maximum execution time Longest time between start and end of code section, which
excludes preemption time.

Average execution time Average time between start and end of code section, which
excludes preemption time.

Calls Number of calls to the code section.

To display the profile data for the generated code section, click the Membrane
button   in the Coder Execution Profiling Report.

Input Arguments

profileInfo — Profile configuration information
structure

Profile configuration data, consisting of the following fields:

rawdataonhost — Flag specifying whether the raw data is on development or target
computer
0 (default) | 1

• 0 — The raw data file xPCTrace.csv is on the target computer. Transfer the file
from the target computer to the host.

• 1 — The raw data file xPCTrace.csv is in the current folder on the development
computer.

Data Types: double

modelname — Name of the model to be profiled
usrname

The name can include the model file extension.
Data Types: char

6-10



 profile_slrt

noplot — Flag suppressing execution profile plot
0 (default) | 1

• 0 — Display the execution profile plot on the development computer monitor.
• 1 — Do not display the execution profile plot on the development computer monitor.

Data Types: double

noreport — Flag suppressing code execution profiling report
0 (default) | 1

• 0 — Display the code execution profiling report on the development computer
monitor.

• 1 — Do not display the code execution profiling report on the development computer
monitor.

Data Types: double

Output Arguments

profData — Profile results data
structure

Profile results data stored in an object of type coder.profile.ExecutionTime.

TimerTicksPerSecond — Number of seconds per timer tick
double

Scales the execution-time tick.

Sections — Array of results data for profiled code sections
array

Each array item is an object of type coder.profile.ExecutionTimeSection.

See Also

See Also
Sections | TimerTicksPerSecond

6-11



6 MATLAB API

Topics
“Execution Profiling for Real-Time Applications”
“Failure to Read Profiling Data”

Introduced in R2014a

6-12



 slrt

slrt
Interface for managing target computer

Syntax

target_object = slrt

target_object = slrt(target_name)

Description

target_object = slrt constructs a target object representing the default target
computer.

When MATLAB evaluates the return value on the development computer, it attempts to
connect to the target computer. If the attempt succeeds, MATLAB prints Connected =
Yes, followed by the status of the real-time application running on the target computer.
If the attempt fails, MATLAB waits until the connection times out, and then prints
Connected = No. To avoid the timeout delay, check that the target computer is
operational and connected to the development computer, or suppress output with a
terminating semicolon.

target_object = slrt(target_name) constructs a target object representing the
target computer designated by target_name.

Examples

Default Target Computer

Create a target object that communicates with the default target computer. Report the
status of the default target computer. In this case, the target computer is connected to
the development computer and is executing the loader.

target_object = slrt

Target: TargetPC1

   Connected            = Yes

6-13



6 MATLAB API

   Application          = loader

Specific Target Computer

Create a target object that communicates with target computer TargetPC1. Report the
status of the target computer. In this case, the target computer is not connected to the
development computer.

target_object = slrt('TargetPC1')

Target: TargetPC1

   Connected            = No

Input Arguments

target_name — Name assigned to target computer
character vector
Example: 'TargetPC1'

Data Types: char

Output Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

See Also

See Also
SimulinkRealTime.target | Target Settings Properties

6-14



 slrt

Introduced in R2014a

6-15



6 MATLAB API

slrtdrivertool

Construct skeleton for custom driver

Syntax

slrtdrivertool

Description

slrtdrivertool opens the Simulink Real-Time Driver Authoring Tool. Using this tool,
you can:

• Define the driver name.
• Specify how the sample time is defined (inherited or as a mask parameter).
• Define input and output ports.
• Define parameters and working variables.
• Generate a C file template (optional).
• Generate a block and mask dialog box (optional).
• Save and load settings.
• Build a skeleton driver.

Examples

Define a Skeleton Driver

slrtdrivertool

6-16



 slrtdrivertool

See Also

Introduced in R2014a

6-17



6 MATLAB API

slrtexplr

Configure target computer and real-time application for execution

Syntax

slrtexplr

Description

Typing slrtexplr at the MATLAB command prompt opens Simulink Real-Time
Explorer.

When you run Simulink Real-Time Explorer from within MATLAB, you have available
the full capabilities of Simulink Real-Time Explorer.

From within Simulink Real-Time Explorer, you can export a session as a standalone
executable that runs without MATLAB. When you run it as a standalone executable, you
have available a subset of the capabilities of Simulink Real-Time Explorer.

For more information, see Simulink Real-Time Explorer.

Examples

Default

Open Simulink Real-Time Explorer

slrtexplr

6-18



 slrtexplr

See Also

See Also
Simulink Real-Time Explorer

Introduced in R2014a

6-19



6 MATLAB API

slrtgetCC
Compiler settings for development computer environment

Syntax

slrtgetCC

type = slrtgetCC

type = slrtgetCC('Type')

location = slrtgetCC('Location')

[type,location] = slrtgetCC

slrtgetCC('supported')

slrtgetCC('installed')

[compilers] = slrtgetCC('installed')

Description

slrtgetCC displays the compiler type and location in the Command Window.

type = slrtgetCC and type = slrtgetCC('Type') both return the compiler type
in type.

location = slrtgetCC('Location') returns the compiler location in location.

The mex -setup command sets the default compiler for Simulink Real-Time builds,
provided the MEX compiler is a supported Microsoft compiler. slrtgetCC returns
the result of the slrtsetCC command only, not the result of the mex command. If
slrtgetCC returns an empty character vector as location, Simulink Real-Time is
using the MEX compiler.

[type,location] = slrtgetCC returns the compiler type and its location in type
and location.

slrtgetCC('supported') displays the compiler versions supported by the Simulink
Real-Time environment.

slrtgetCC('installed') displays the supported compilers installed on the
development computer.

6-20



 slrtgetCC

[compilers] = slrtgetCC('installed') returns in a structure the supported
compilers installed on the development computer.

Examples
Display Compiler Type and Location

slrtgetCC

Compiler Settings:

 Type = VisualC

 Location = C:\Program Files (x86)\Microsoft Visual Studio 10.0

Return Compiler Type

type = slrtgetCC('Type')

type =

VisualC

Return Compiler Location

location = slrtgetCC('Location')

location =

C:\Program Files (x86)\Microsoft Visual Studio 10.0

Return Compiler Type and Location

[type, location] = slrtgetCC

type =

VisualC

location =

C:\Program Files (x86)\Microsoft Visual Studio 10.0

Display Supported Compilers

slrtgetCC('supported')

6-21



6 MATLAB API

List of C++ Compilers supported by Simulink Real-Time:

Name                                              Version   Service

                                                            Packs

Microsoft Visual C++ Compilers 2008               9.0       1

Microsoft Visual C++ Compilers 2010               10.0      1

Microsoft Visual C++ Compilers 2012               11.0

Microsoft Visual C++ Compilers (Windows SDK) 2010 10.0      1

Display Supported Compilers Installed

slrtgetCC('installed')

List of installed C++ Compilers:

Name: Microsoft Visual C++ Compilers 2008 Professional Edition 

      (SP1)

Location: c:\Program Files (x86)\Microsoft Visual Studio 9.0

Name: Microsoft Visual C++ Compilers 2010 Professional

Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Return Supported Compilers Installed

[compilers] = slrtgetCC('installed')

compilers(1)

compilers = 

1x2 struct array with fields:

    Type

    Name

    Location

ans = 

        Type: 'VisualC'

        Name: 'Microsoft Visual C++ Compilers 2008 Professional 

               Edition (SP1)'

6-22



 slrtgetCC

    Location: 'c:\Program Files (x86)\Microsoft Visual Studio 9.0'

Output Arguments

type — Type of compiler
VisualC

Simulink Real-Time supports the Microsoft Visual Studio C compiler only.

location — Folder path to compiler on development computer
character vector

compilers — Array of structures containing compiler type, name, and location
array of structures

See Also

See Also
mex | slrtsetCC

External Websites
www.mathworks.com/support/compilers/current_release

Introduced in R2014a

6-23

https://www.mathworks.com/support/compilers/current_release/


6 MATLAB API

slrtpingtarget
Test communication between development and target computers

Syntax

link_status = slrtpingtarget

link_status = slrtpingtarget(target_object)

link_status = slrtpingtarget(target_computer_name)

[link_status connection_info] = slrtpingtarget( ___ )

[link_status connection_info] = slrtpingtarget( ___ , 'info')

[link_status connection_info] = slrtpingtarget( ___ , 'reset')

Description

link_status = slrtpingtarget without an argument tests at a low level whether
the development computer and the default target computer can communicate using the
settings for that target computer. If a data channel is open between the development and
target computers, the function leaves it open.

link_status = slrtpingtarget(target_object) tests whether the development
computer and the target computer represented by target_object can communicate
using the settings stored in target_object. If a data channel is open between the
development and target computers, the function leaves it open.

link_status = slrtpingtarget(target_computer_name) tests whether the
development computer can communicate with target computer target_computer_name
using the settings for that target computer. If a data channel is open between the
development and target computers, the function leaves it open.

Calls to [link_status connection_info] = slrtpingtarget( ___ ) have the
same behavior as slrtpingtarget(target_object).

[link_status connection_info] = slrtpingtarget( ___ , 'info') uses
the information/control channel to return information about the Simulink Real-Time

6-24



 slrtpingtarget

connection between the development and target computers. If a data channel is open
between the development and target computers, the function leaves it open.

[link_status connection_info] = slrtpingtarget( ___ , 'reset') uses
the information/control channel to close an open communication channel between
the development and target computers and then returns link status and connection
information.

Examples

Check Communication with Default Target Computer

link_status = slrtpingtarget

link_status =

success

Check Communication with Target Computer by Target Object

target_object = slrt('TargetPC1');

link_status = slrtpingtarget(target_object)

link_status =

success

Check Communication with Target Computer by Name

link_status = slrtpingtarget('TargetPC1')

link_status =

failed

Get Information About Default Target Computer Connection

[link_status connection_info] = slrtpingtarget('info')

link_status =

success

connection_info =

6-25



6 MATLAB API

10.10.10.100

Get Information About Connection with Target Object

target_object = slrt('TargetPC1');

[link_status connection_info] = ...

     slrtpingtarget(target_object, 'info')

link_status =

success

connection_info =

Disconnected

Get Information About Target Computer with Name

[link_status connection_info] = slrtpingtarget('TargetPC1', 'info')

link_status =

failed

connection_info =

'fail: Target machine did not respond.'

Reset Default Target Computer

[link_status connection_info] = slrtpingtarget('reset')

link_status =

success

connection_info =

Disconnected

Input Arguments

target_computer_name — Name of specific target computer
'TargetPC1' (default) | character vector | ...

6-26



 slrtpingtarget

Name property of a particular target computer environment object. The default name is
'TargetPC1'.

Example: 'TargetPC2'

Data Types: char

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

Output Arguments

link_status — Reports if communication is possible between the development and target
computers
'success' | 'failed'

• If communication is possible between the development and target computers, this
value is 'success'. The value 'success' does not mean that Simulink Real-Time
has established a connection, only that one is possible.

• If communication is not possible between the development and target computers,
this value is 'failed'. The function returns 'failed' for such reasons as a
faulty or disconnected Ethernet cable or an erroneous IP address setting. For
more information, see “Failed Communication Between Development and Target
Computers”.

connection_info — Reports whether a connection is active to a development computer
network address
'xx:xx:xx:xx' | 'Disconnected' | character vector

If you call ping without a second argument:

• If communication is possible, connection_info is empty.
• If communication is not possible, connection_info contains an error message.

6-27



6 MATLAB API

If you call ping with a second argument of 'info':

• If the connection is active, connection_info reports the development computer
network address to which the target computer is connected.

• If the connection is not active, connection_info contains 'Disconnected'.
• If communication is not possible, connection_info contains an error message.

If you call ping with a second argument of 'reset':

• If communication is possible, connection_info contains 'Disconnected'.
• If communication is not possible, connection_info contains an error message.

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target.ping

Topics
“Failed Communication Between Development and Target Computers”

Introduced in R2014a

6-28



 slrtsetCC

slrtsetCC
Compiler settings for development computer environment

Syntax
slrtsetCC setup

slrtsetCC 'type' 'location'

Description
slrtsetCC setup queries the development computer for installed C compilers
supported by the Simulink Real-Time environment. You can then select the C compiler.

The command mex -setup sets the default compiler for Simulink Real-Time
builds, provided the MEX compiler is a supported Microsoft compiler. Use
slrtsetCC('setup') only if you must specify different compilers for MEX and
Simulink Real-Time.

By default, the Microsoft Visual Studio 2015 installer does not install the C++ compiler
that Simulink Real-Time requires. To install the C++ compiler, perform a custom install
and select the C++ compiler. If you already installed Microsoft Visual Studio with the
default configuration, rerun the installer and choose the modify option.

slrtsetCC 'type' 'location' sets the compiler type and location.

To return to the default MEX compiler from a setting by slrtsetCC, type slrtsetCC
'VisualC' '', setting the compiler location to the empty character vector.

Examples
Compiler Selection

slrtsetCC setup

Select your compiler for Simulink Real-Time.

[1] Microsoft Visual C++ Compilers 2008 Professional Edition (SP1) 

     in c:\Program Files (x86)\Microsoft Visual Studio 9.0

6-29



6 MATLAB API

[2] Microsoft Visual C++ Compilers 2010 Professional 

     in C:\Program Files (x86)\Microsoft Visual Studio 10.0

[0] None

Compiler:2

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional

Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Are these correct [y]/n?y

Done...

Compiler Specification

slrtsetCC 'VisualC',

     'C:\Program Files (x86)\Microsoft Visual Studio 10.0'

Input Arguments
type — Type of compiler
VisualC (default)

type must be VisualC, representing the Microsoft Visual Studio C compiler.

Example: 'VisualC'

Data Types: char

location — Folder path to compiler on development computer
character vector
Data Types: char

See Also

See Also
mex | slrtgetCC

6-30



 slrtsetCC

External Websites
www.mathworks.com/support/compilers/current_release

Introduced in R2014a

6-31

https://www.mathworks.com/support/compilers/current_release/


6 MATLAB API

slrttest
Test Simulink Real-Time installation

Syntax

slrttest

slrttest noreboot

slrttest target_name, ___

Description

slrttest is a confidence test that checks the following tasks:

• Initiate communication between the development and target computers.
• Restart the target computer and reset the target environment.
• Build a real-time application on the development computer.
• Download a real-time application to the target computer.
• Check communication between the development and target computers using

commands.
• Execute a real-time application.
• Compare the results of a simulation and the real-time application run.

slrttest noreboot skips the restart test on the default target computer. Use this
option if the target computer does not support software restart.

slrttest target_name, ___  executes the tests on the target computer identified by
target_name.

Examples

Test Default Target Computer

Target computer must be running and physically connected to the development
computer.

6-32



 slrttest

slrttest

### Simulink Real-Time Test Suite 

### Host-Target interface is: TcpIp

### Test 1, Ping target computer 'TargetPC1' using 

    system ping:  OK

### Test 2, Ping target computer 'TargetPC1' using 

    SLRTPINGTARGET:  OK

### Test 3, Software reboot the target computer

    'TargetPC1':  OK

### Test 4, Build and download a Simulink Real-Time application 

    using model slrttestmdl to target computer 'TargetPC1':  OK

### Test 5, Check host-target command communications with 

    'TargetPC1':  OK

### Test 6, Download a pre-built Simulink Real-Time application 

    to target computer 'TargetPC1': ... OK

### Test 7, Execute the Simulink Real-Time application 

    for 0.2s:  OK

### Test 8, Upload logged data and compare with simulation 

    results:  OK

### Test Suite successfully  finished

Test Default Target Computer, Skipping Restart Test

Target computer must be running and physically connected to the development
computer.

slrttest noreboot

Test Specified Target Computer, Skipping Restart Test

Target computer must be running and physically connected to the development
computer.

slrttest 'TargetPC1' noreboot

Input Arguments

target_name — Specifies target name
character vector

The target name character vector is case-sensitive.

6-33



6 MATLAB API

Example: 'TargetPC1'

See Also

Topics
“Troubleshooting in Simulink Real-Time”

Introduced in R2014a

6-34



 SimulinkRealTime.addTarget

SimulinkRealTime.addTarget
Add target computer interface

Syntax

settings_object = SimulinkRealTime.addTarget(target_name)

Description

settings_object = SimulinkRealTime.addTarget(target_name) adds the
definition for a new target computer, represented by the name target_name. It returns
an object containing the settings for the target computer.

Examples

Add Target 'TargetPC2' to System

Create a settings object representing target computer 'TargetPC2'.

settings_object = SimulinkRealTime.addTarget('TargetPC2')

Simulink Real-Time Target Settings

    Name                     : TargetPC2                     

    TargetRAMSizeMB          : Auto                          

    MaxModelSize             : 1MB                           

    SecondaryIDE             : off                           

    MulticoreSupport         : on                            

    LegacyMultiCoreConfig    : on                            

    USBSupport               : on                            

    ShowHardware             : off                           

    EthernetIndex            : 0                             

    TcpIpTargetAddress       :                               

    TcpIpTargetPort          : 22222                         

    TcpIpSubNetMask          : 255.255.255.0                 

6-35



6 MATLAB API

    TcpIpGateway             : 255.255.255.255               

    TcpIpTargetDriver        : Auto                          

    TcpIpTargetBusType       : PCI                           

    TargetScope              : Enabled                       

    TargetBoot               : BootFloppy                    

    BootFloppyLocation       :                       

Input Arguments

target_name — Name assigned to target computer
character vector
Example: 'TargetPC1'

Data Types: char

Output Arguments

settings_object — Settings object representing target computer
SimulinkRealTime.targetSettings object

Object containing target computer environment settings.
Data Types: struct

See Also

See Also
SimulinkRealTime.getTargetSettings | SimulinkRealTime.removeTarget

Introduced in R2014a

6-36



 Application

Application
Represent application files on development computer

Description

Object represents application files on the development computer.

Object provides access to a method that updates root-level inport data.

Create Object

SimulinkRealTime.application

Object Functions
SimulinkRealTime.Application.-
updateRootLevelInportData

Replace inport data in a real-time
application with new inport data

Examples

Update Root-Level Inport Data

Waveform data was originally a square wave. Change it to a sine wave.

Change inport waveform data from a square wave to sine wave.

waveform = sinewave;

Create an application object.

app_object = SimulinkRealTime.Application('ex_slrt_inport_osc');

Update inport data.

updateRootLevelInportData(app_object)

Download the updated inport data.

6-37



6 MATLAB API

tg = slrt;

load(tg, 'ex_slrt_inport_osc');

• “Define and Update Inport Data”
• “Define and Update Inport Data with MATLAB Language”

See Also

Topics
“Define and Update Inport Data”
“Define and Update Inport Data with MATLAB Language”

Introduced in R2017a

6-38



 SimulinkRealTime.Application

SimulinkRealTime.Application
Create object that represents application files on development computer

Syntax

app_object = SimulinkRealTime.Application(application_name)

Description

app_object = SimulinkRealTime.Application(application_name) creates
an object that you can use to manipulate real-time application files on the development
computer.

Examples

Create Application Object

Create an application object for real-time application x_slrt_inport_osc.

Create an application object.

app_object = SimulinkRealTime.Application('ex_slrt_inport_osc');

• “Define and Update Inport Data”
• “Define and Update Inport Data with MATLAB Language”

Input Arguments

application_name — Name of real-time application
character vector

This is the file name without extension of the .mldatx file that the build produces on the
development computer.
Example: 'ex_slrt_inport_osc'

6-39



6 MATLAB API

Output Arguments

app_object — Represent real-time application files on the development computer
object

Provides access to methods that manipulate the real-time application files.

See Also

See Also
Application | SimulinkRealTime.Application.updateRootLevelInportData

Topics
“Define and Update Inport Data”
“Define and Update Inport Data with MATLAB Language”

Introduced in R2017a

6-40



 SimulinkRealTime.Application.updateRootLevelInportData

SimulinkRealTime.Application.updateRootLevelInportData
Replace inport data in a real-time application with new inport data

Syntax

updateRootLevelInportData(app_object)

Description

updateRootLevelInportData(app_object) updates

Examples

Update Inport Data with Application Object

Create an application object for real-time application ex_slrt_inport_osc. Use it to
update inport data.

Change inport waveform data from a square wave to sine wave.

waveform = sinewave;

Create an application object.

app_object = SimulinkRealTime.Application('ex_slrt_inport_osc');

Update inport data.

updateRootLevelInportData(app_object)

Download the updated inport data.

tg = slrt;

load(tg, 'ex_slrt_inport_osc');

• “Define and Update Inport Data”
• “Define and Update Inport Data with MATLAB Language”

6-41



6 MATLAB API

Input Arguments

app_object — Represent real-time application files on the development computer
object

Provides access to methods that manipulate the real-time application files.

See Also

See Also
Application | SimulinkRealTime.application

Topics
“Define and Update Inport Data”
“Define and Update Inport Data with MATLAB Language”

Introduced in R2017a

6-42



 SimulinkRealTime.copyFileToHost

SimulinkRealTime.copyFileToHost
Copy file from target computer to development computer

Syntax

SimulinkRealTime.copyFileToHost(file_name)

SimulinkRealTime.copyFileToHost(target_obj,file_name)

Description

SimulinkRealTime.copyFileToHost(file_name) copies file file_name from the
default target computer to the development computer.

SimulinkRealTime.copyFileToHost(target_obj,file_name) copies file
file_name from the target computer represented by target_obj to the development
computer.

Examples

Copy File by Name from Default Target Computer

Copy file from current folder on default target computer.

SimulinkRealTime.copyFileToHost('data.dat')

Copy File by Full Path from Target Computer

Copy file from full path location on target computer TargetPC1.

tg = slrt('TargetPC1');

SimulinkRealTime.copyFileToHost(tg,'c:\xpcosc\data1.dat')

Input Arguments

target_obj — Name of a target computer or a variable containing a target computer object
character vector | object

6-43



6 MATLAB API

If the argument is a character vector, it must be the name assigned to a previously
configured target computer.

If the argument is a variable containing an object, it must be a
SimulinkRealTime.target object representing a previously configured target
computer.
Example: ‘TargetPC1’

Example: tg

Data Types: char | struct

file_name — Name of a file on the target computer
file name character vector | full path name character vector

If the argument is a file name, the file must be in the current folder on the target
computer, as indicated by the function SimulinkRealTime.fileSystem.pwd.

The file is transferred from the target and written with the same file name to the current
folder on the development computer.
Example: 'myFile.txt'

Example: 'c:\subDir\myFile.txt'

Data Types: char

See Also

See Also
SimulinkRealTime.copyFileToTarget | SimulinkRealTime.fileSystem.cd |
SimulinkRealTime.fileSystem.dir | SimulinkRealTime.fileSystem.pwd

Introduced in R2014a

6-44



 SimulinkRealTime.copyFileToTarget

SimulinkRealTime.copyFileToTarget

Copy file from development computer to target computer

Syntax

SimulinkRealTime.copyFileToTarget(file_name)

SimulinkRealTime.copyFileToTarget(target_obj,file_name)

Description

SimulinkRealTime.copyFileToTarget(file_name) copies file file_name from the
development computer to the default target computer.

SimulinkRealTime.copyFileToTarget(target_obj,file_name) copies file
file_name from the development computer to the target computer represented by
target_obj.

Examples

Copy File to Default Target Computer Top Folder

Copy file from current folder on development computer to top folder on default target
computer.

SimulinkRealTime.copyFileToTarget('data.dat')

Copy File to Target Computer by Full Path

Copy file from current folder on development computer to full path location on target
computer TargetPC1.

tg = slrt('TargetPC1');

6-45



6 MATLAB API

SimulinkRealTime.copyFileToTarget(tg,'c:\xpcosc\data1.dat')

Input Arguments

target_obj — Name of a target computer or a variable containing a target computer object
character vector | object

If the argument is a character vector, the character vector must contain the name
assigned to a previously configured target computer.

If the argument is a variable containing an object, the object must be a
SimulinkRealTime.target object representing a previously configured target
computer.
Example: ‘TargetPC1’

Example: tg

Data Types: char | struct

file_name — Name of a file in the current folder on the development computer
file name character vector | full path name character vector

The file being copied must exist in the current folder on the development computer.

If the argument is a file name, the file is copied to the current folder on the target
computer, as indicated by the function SimulinkRealTime.fileSystem.pwd.

If the argument is a path name, the file portion of the path name is extracted as the
development computer file name. The file is copied to the location indicated by the path
name. The folder must exist on the target computer.
Example: 'myFile.txt'

Example: 'c:\subDir\myFile.txt'

Data Types: char

6-46



 SimulinkRealTime.copyFileToTarget

See Also

See Also
SimulinkRealTime.copyFileToHost | SimulinkRealTime.fileSystem.cd |
SimulinkRealTime.fileSystem.dir | SimulinkRealTime.fileSystem.pwd

Introduced in R2014a

6-47



6 MATLAB API

Crash Info
Retrieve information about a target computer CPU exception

Description

Creates an object that reads a crash file from target computer

Some target computers contain hardware that can retain information in memory from
before a software restart. If these computers also contain a hard drive, they can save
crash data after a fatal error.

Caution: After a fatal error, do not restart the computer manually by using the boot or
power switch. A manual restart prevents the computer from saving the crash data.

Twenty seconds after a fatal error, the target computer restarts itself and saves the crash
data on the target computer hard drive. When the computer is running again, you can
call the SimulinkRealTime.crashInfo function from the development computer to
retrieve the crash data.

Create Object

SimulinkRealTime.crashInfo

Properties

crashData — Structure that contains crash dump data
structure

This property is read-only.

Structure with the following customer-relevant fields:

• MATLABRelease — Version of MATLAB

6-48



 Crash Info

• HasException — 1 if the CPU had an exception, otherwise 0
• ModelName — Name of real-time application
• MdlExecutionTime — Stop time of model

The remaining fields are for MathWorks internal use only.

crashLocation — Structure that contains the crash location
structure

This property is read-only.

Structure with the following customer-relevant fields:

• Found — 1 if the crash point was found, otherwise 0
• Message — Message describing location, one of:

• Found in model code

• Failed to locate crash point in model code

• Crash point is outside reachable address space

• File — Name of crash source file
• Line — Line number in source file
• Function — Name of function that causes crash

The remaining field is for MathWorks internal use only.

The line number comes from the value that the program instruction pointer had when
the kernel exception handler caught the fatal exception. The crash can come from a
previous instruction and therefore from a previous line of code.

crashTime — Structure that contains time when crash occurred
structure

Structure with the following customer-relevant fields:

• TargetTimeAtCrash — Time of crash, according to target computer clock
• CurrentTargetTime — Time of call to get crash information, according to target

computer clock
• CurrentHostTime — Time of call to get crash information, according to development

computer clock

6-49



6 MATLAB API

buildDir — Folder where real-time application was built
current directory (default) | character vector

Specifies the model build folder. If the current folder is not the build folder, you can set
buildDir to a specific value. The object uses the build folder to locate the model files.

Object Functions
SimulinkRealTime.crashInfo.display Display crash information
SimulinkRealTime.crashInfo.update Update crash information object

Examples

Get Crash Information After CPU Exception

Create a crashInfo object, get its properties, display crash information.

Wait for the target computer to restart itself and display the error message.

Error: Target computer halted with an exception and restarted

automatically. To get information about the exception, call

SimulinkRealTime.crashInfo from MATLAB.

Create a crashInfo object.

cinfo_object = SimulinkRealTime.crashInfo('TargetPC1')

Crash information object saved as C:\Users\AppData\Local\...

    Temp\SLRTCrashInfo_2016_28_20_56_00_33.mat

--------------- Crash report ------------------

Crash time:        28-Jun-2016 20:56:00. Current target ...

    computer time: 28-Jun-2016 20:58:00

Model:             testmodel

Crash address:     2003B643

Model base:        20030000

File:              c:\pdbparsing\test_sfun.c, line 106

Function:          mdlOutputs

Message:           Found in model code

6-50



 Crash Info

For technical support, send the SLRTCrashInfo*.mat file to MathWorks® Support
(www.mathworks.com/support).

See Also

See Also
SimulinkRealTime.getSupportInfo

Topics
“Find Simulink Real-Time Support”
“Error from Crash Info Function”

External Websites
www.mathworks.com/support

Introduced in R2016b

6-51

https://www.mathworks.com/support
https://www.mathworks.com/support


6 MATLAB API

SimulinkRealTime.crashInfo
Create crash information object

Syntax

cinfo_object = SimulinkRealTime.crashInfo(target_name)

cinfo_object = SimulinkRealTIme.crashInfo(target_object)

cinfo_object = SimulinkRealTime.crashInfo(settings_object)

Description

cinfo_object = SimulinkRealTime.crashInfo(target_name) creates and
returns a crash information object.

If a CPU exception occurred, it calls SimulinkRealTime.crashInfo.update and
SimulinkRealTime.crashInfo.display to print the crash information.

If a CPU exception did not occur, SimulinkRealTime.crashInfo produces an error
message.

cinfo_object = SimulinkRealTIme.crashInfo(target_object) and 
cinfo_object = SimulinkRealTime.crashInfo(settings_object) create and
return a crash information object.

If a CPU exception occurred, it calls SimulinkRealTime.crashInfo.update and
SimulinkRealTime.crashInfo.display to print the crash information.

If a CPU exception did not occur, SimulinkRealTime.crashInfo produces an error
message.

Examples

Get Crash Information by Target Computer Name

Create a crashInfo object by name and display crash information.

Wait for the target computer to restart itself and display the error message.

6-52



 SimulinkRealTime.crashInfo

Error: Target computer halted with an exception and restarted

automatically. To get information about the exception, call

SimulinkRealTime.crashInfo from MATLAB.

Create a crashInfo object.

cinfo_object = SimulinkRealTime.crashInfo('TargetPC1')

Crash information object saved as C:\Users\AppData\Local\...

    Temp\SLRTCrashInfo_2016_28_20_56_00_33.mat

--------------- Crash report ------------------

Crash time:        28-Jun-2016 20:56:00. Current target ...

    computer time: 28-Jun-2016 20:58:00

Model:             testmodel

Crash address:     2003B643

Model base:        20030000

File:              c:\pdbparsing\test_sfun.c, line 106

Function:          mdlOutputs

Message:           Found in model code

Get Crash Information by Target Object

Create a crashInfo object by target object and display crash information.

Create and display a crashInfo object.

target_object = slrt;

cinfo_object = SimulinkRealTime.crashInfo(target_object)

Crash information object saved as C:\Users\AppData\Local\...

    Temp\SLRTCrashInfo_2016_28_20_56_00_33.mat

--------------- Crash report ------------------

Crash time:        28-Jun-2016 20:56:00. Current target ...

    computer time: 28-Jun-2016 20:58:00

Model:             testmodel

Crash address:     2003B643

Model base:        20030000

File:              c:\pdbparsing\test_sfun.c, line 106

Function:          mdlOutputs

Message:           Found in model code

Get Crash Information by Settings Object

Create a crashInfo object by settings object and display crash information.

6-53



6 MATLAB API

Create and display a crashInfo object.

settings_object = SimulinkRealTime.getTargetSettings('TargetPC1');

cinfo_object = SimulinkRealTime.crashInfo(settings_object)

Crash information object saved as C:\Users\AppData\Local\...

    Temp\SLRTCrashInfo_2016_28_20_56_00_33.mat

--------------- Crash report ------------------

Crash time:        28-Jun-2016 20:56:00. Current target ...

    computer time: 28-Jun-2016 20:58:00

Model:             testmodel

Crash address:     2003B643

Model base:        20030000

File:              c:\pdbparsing\test_sfun.c, line 106

Function:          mdlOutputs

Message:           Found in model code

Input Arguments

target_name — Name of target computer
character vector

Name of target computer that had a CPU exception.
Example: 'TargetPC1'

target_object — Object representing target computer that had a CPU exception
SimulinkRealTime.target object

Object representing the target computer.
Data Types: struct

settings_object — Settings object representing target computer
SimulinkRealTime.targetSettings object

Object containing target computer environment settings.
Data Types: struct

6-54



 SimulinkRealTime.crashInfo

Output Arguments

cinfo_object — Object representing crash information
structure

Object that provides properties and functions for accessing crash information.

See Also

See Also
Crash Info | SimulinkRealTime.crashInfo.display | SimulinkRealTime.-
crashInfo.update

Topics
“Error from Crash Info Function”

Introduced in R2016b

6-55



6 MATLAB API

SimulinkRealTime.crashInfo.display
Display crash information

Syntax

display(cinfo_object)

Description

display(cinfo_object) prints crash information in the MATLAB Command Window.

Examples

Display Crash Information

Display crash information from preexisting crash information object.

display(cinfo_object);

--------------- Crash report ------------------

Crash time:        28-Jun-2016 20:56:00. Current target ...

    computer time: 28-Jun-2016 20:58:00

Model:             testmodel

Crash address:     2003B643

Model base:        20030000

File:              c:\pdbparsing\test_sfun.c, line 106

Function:          mdlOutputs

Message:           Found in model code

Input Arguments

cinfo_object — Object representing crash information
structure

Object that provides properties and functions for accessing crash information.

6-56



 SimulinkRealTime.crashInfo.display

See Also

See Also
Crash Info

Topics
“Error from Crash Info Function”

Introduced in R2016b

6-57



6 MATLAB API

SimulinkRealTime.crashInfo.update
Update crash information object

Syntax

update(cinfo_object)

Description

update(cinfo_object) retrieves the results of a new CPU exception with a
preexisting crash information object. It prints the location of the crash information file.
To display the new crash information, call SimulinkRealTime.crashInfo.display.

Examples

Update and Display New Crash Information

After a new CPU exception, update and display a preexisting crash information object.

Wait for the target computer to restart itself and display the error message.

Error: Target computer halted with an exception and restarted

automatically. To get information about the exception, call

SimulinkRealTime.crashInfo from MATLAB.

Update a preexisting crashInfo object.

update(cinfo_object);

Crash information object saved as C:\Users\AppData\Local\...

    Temp\SLRTCrashInfo_2016_28_20_56_00_33.mat

Display the new crash information.

display(cinfo_object);

--------------- Crash report ------------------

6-58



 SimulinkRealTime.crashInfo.update

Crash time:        28-Jun-2016 20:56:00. Current target ...

    computer time: 28-Jun-2016 20:58:00

Model:             testmodel

Crash address:     2003B643

Model base:        20030000

File:              c:\pdbparsing\test_sfun.c, line 106

Function:          mdlOutputs

Message:           Found in model code

Input Arguments

cinfo_object — Object representing the crash information
structure

Object that provides properties and functions for accessing crash information.

See Also

See Also
Crash Info | SimulinkRealTime.crashInfo.display

Topics
“Error from Crash Info Function”

Introduced in R2016b

6-59



6 MATLAB API

SimulinkRealTime.createBootImage
Create Simulink Real-Time boot disk or DOS Loader files

Syntax

SimulinkRealTime.createBootImage

SimulinkRealTime.createBootImage(target_computer_name)

SimulinkRealTime.createBootImage(target_settings_object)

SimulinkRealTime.createBootImage(target_object)

Description

SimulinkRealTime.createBootImage creates a boot image for the default target
computer. The form of the boot image depends upon the value of the TargetBoot
environment property.

• BootFloppy — To create a boot floppy disk, the software prompts you to insert an
empty formatted disk into the drive. The software writes the kernel image onto the
disk and displays a summary of the creation process.

• CDBoot — To create a CD or DVD boot disk, the software prompts you to insert an
empty formatted CD or DVD into the drive. The software writes the kernel image onto
the CD or DVD and displays a summary of the creation process.

• NetworkBoot — To create a network boot image, the software starts the network
boot server process.

• DOSLoader — To create DOS Loader files, the software writes kernel image and DOS
Loader files into a designated location on the development computer. You can then
copy the files to the target computer hard drive, to a floppy disk, or to a flash drive.

• StandAlone — To create files for a standalone real-time application, you must
separately compile and download a combined kernel and real-time application.
SimulinkRealTime.createBootImage does not generate a standalone application.

To update the TargetBoot environment property:

tg = SimulinkRealTime.getTargetSettings

tg.TargetBoot = new_value

6-60



 SimulinkRealTime.createBootImage

If you update the environment, you must update the boot image with the function
SimulinkRealTime.createBootImage.

SimulinkRealTime.createBootImage(target_computer_name) creates a boot
image for the target computer indicated by the target_name character vector.

SimulinkRealTime.createBootImage(target_settings_object) creates a boot
image for the target computer indicated by the target_settings_object.

SimulinkRealTime.createBootImage(target_object) creates a boot image for the
target computer indicated by target_object.

Examples

Create Boot Image for Default Target Computer

Create boot image for default target computer.

SimulinkRealTime.createBootImage

Create Boot Image for Named Target Computer

Create boot image for target computer 'TargetPC1'.

SimulinkRealTime.createBootImage('TargetPC1')

Create Boot Image for Target Computer Settings Object

Create boot image for target computer represented by settings object
target_settings_object.

target_settings_object = ...

     SimulinkRealTime.getTargetSettings('TargetPC1');

SimulinkRealTime.createBootImage(target_settings_object)

Create Boot Image for Target Computer Runtime Object

Create boot image for target computer represented by run-time target object
target_object.

target_object = SimulinkRealTime.target('TargetPC1');

6-61



6 MATLAB API

SimulinkRealTime.createBootImage(target_object)

Input Arguments

target_computer_name — Name of specific target computer
'TargetPC1' | 'TargetPC2' | ...

Name property of a particular target computer environment object. The default name is
'TargetPC1'.

Example: TargetPC1

Data Types: char

target_settings_object — Object representing settings for specific target computer
object variable

Object of the type returned by SimulinkRealTime.addTarget or
SimulinkRealTime.getTargetSettings that represents the settings of the target
computer.
Example:
Data Types: struct

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

See Also

See Also
SimulinkRealTime.addTarget | SimulinkRealTime.getTargetSettings |
SimulinkRealTime.target | slrt | Target Settings Properties

6-62



 SimulinkRealTime.createBootImage

Topics
“Target Computer Boot Methods”
“Command-Line Target Computer Boot Methods”

Introduced in R2014a

6-63



6 MATLAB API

SimulinkRealTime.getSupportInfo
Diagnostic information to troubleshoot configuration issues

Syntax
summary = SimulinkRealTime.getSupportInfo

summary = SimulinkRealTime.getSupportInfo(modelname)

Description
summary = SimulinkRealTime.getSupportInfo generates diagnostic information
for troubleshooting Simulink Real-Time issues. The function saves the information in
the file slrtinfo.m in the current folder. If slrtinfo.m exists, the function overwrites
it with the new information. The function returns a structure containing key diagnostic
information.

If the target computer halted with a fatal error and saved crash data on its hard
drive, SimulinkRealTime.getSupportInfo loads the crash data into a file on the
development computer and reports the path to that file.

Calling SimulinkRealTime.getSupportInfo unloads your model and runs the
diagnostic test slrttest. Before calling this function, stop executing your real-time
application and unload it.

SimulinkRealTime.getSupportInfo can record information that is sensitive to your
organization. Review this information before disclosing it to MathWorks.

summary = SimulinkRealTime.getSupportInfo(modelname) generates and
returns the same information as the function does when it is called without an argument.
In addition, it generates the file SLRTDebug.m in the current folder. SLRTDebug.m
contains the Simulink Configuration Parameter settings for model modelname.

Examples

Target Computer Information

Get diagnostic information about a functioning target computer.

6-64



 SimulinkRealTime.getSupportInfo

summary = SimulinkRealTime.getSupportInfo

---------- File created using the Simulink Real-Time ...

    support utility GETSUPPORTINFO ----------

 %% ---------- General Information ----------

 %% Current Time & Date: 15-Jun-2016 09:50:37

.

.

.

 %%   SLRTTEST test:   

Executing SLRTTEST 

This might take a couple of minutes ...

.

.

.

### Test Suite successfully finished

 %% ----------End test---------- 

This information has been saved in the text file slrtinfo.m ...

    in the current directory.

Please attach this text file to the Service Request you ...

    create at:'http://www.mathworks.com/support'

Note: slrtinfo.m may contain sensitive information. Please ...

    review before sending to MathWorks.

summary = 

  struct with fields:

                   date: '29-Jun-2016 17:11:15'

                    ver: [1×88 struct]

.

.

.

             getPCIInfo: [1×17 struct]

                cpuInfo: 'System Information…'

            crashStatus: 0

              crashInfo: 0

6-65



6 MATLAB API

This function generates the file slrtinfo.m in the current folder.

Target Computer and Model Information

Get diagnostic information about a functioning target computer and real-time
application.

summary = SimulinkRealTime.getSupportInfo('testmodel')

---------- File created using the Simulink Real-Time ...

    support utility GETSUPPORTINFO ----------

 %% ---------- General Information ----------

 %% Current Time & Date: 15-Jun-2016 09:50:37

.

.

.

 %%   SLRTTEST test:   

Executing SLRTTEST 

This might take a couple of minutes ...

.

.

.

### Test Suite successfully finished

 %% ----------End test---------- 

This information has been saved in the text file slrtinfo.m ...

    in the current directory.

Please attach this text file to the Service Request you ...

    create at:'http://www.mathworks.com/support'

Note: slrtinfo.m may contain sensitive information. Please ...

    review before sending to MathWorks.

summary = 

  struct with fields:

                   date: '29-Jun-2016 17:11:15'

                    ver: [1×88 struct]

.

.

.

6-66



 SimulinkRealTime.getSupportInfo

             getPCIInfo: [1×17 struct]

                cpuInfo: 'System Information…'

            crashStatus: 0

              crashInfo: 0

This function generates the files slrtinfo.m and SLRTDebug.m in the current folder.

Target Computer and Model Information After Fatal Error

Get diagnostic information about a functioning target computer and real-time application
after a fatal error and an automatic restart.

Wait for the target computer to restart itself and display the error message.

Error: Target computer halted with an exception and restarted

automatically. To get information about the exception, call

SimulinkRealTime.crashInfo from MATLAB.

Call getSupportInfo to get full information about the target computer and real-time
application.

summary = SimulinkRealTime.getSupportInfo('testmodel')

---------- File created using the Simulink Real-Time ...

    support utility GETSUPPORTINFO ----------

 %% ---------- General Information ----------

 %% Current Time & Date: 15-Jun-2016 09:50:37

.

.

.

 %%  ---------- Target Crash Information:  ---------- 

1

Crash information object saved as C:\Users\AppData\Local\...

    Temp\SLRTCrashInfo_2016_28_20_56_00_33.mat

--------------- Crash report ------------------

Crash time:        28-Jun-2016 20:56:00. Current target ...

    computer time: 28-Jun-2016 20:58:00

Model:             testmodel

Crash address:     2003B643

Model base:        20030000

File:              c:\pdbparsing\test_sfun.c, line 106

6-67



6 MATLAB API

Function:          mdlOutputs

Message:           Found in model code

 %%   SLRTTEST test:   

Executing SLRTTEST 

This might take a couple of minutes ...

.

.

.

### Test Suite successfully finished

 %% ----------End test---------- 

This information has been saved in the text file slrtinfo.m ...

    in the current directory.

Please attach this text file to the Service Request you ...

    create at:'http://www.mathworks.com/support'

Note: slrtinfo.m may contain sensitive information. Please ...

    review before sending to MathWorks.

summary = 

   struct with fields:

                   date: '29-Jun-2016 17:11:15'

                    ver: [1×88 struct]

.

.

.

             getPCIInfo: [1×17 struct]

                cpuInfo: 'System Information…'

            crashStatus: 1

              crashInfo: [1×1 SimulinkRealTime.crashInfo]

This function generates the files slrtinfo.m and SLRTDebug.m in the current folder. It
generates the file SLRTCrashInfo*.mat on the development computer hard drive.

Input Arguments
modelname — Name of the model being executed
usrname

6-68



 SimulinkRealTime.getSupportInfo

Do not include a file extension in modelname.
Example: 'xpcosc'

Data Types: char

Output Arguments

summary — Key diagnostic information
struct

The function returns a struct containing the following information:

• date — The current date
• ver — Names and versions of the installed MathWorks products
• path — The Windows path
• matlabroot — The location where MATLAB is installed.
• pwd — The current folder.
• hostname — The name of the development computer
• dosversion — The version of Windows installed on the development computer
• antivirus — Information about antivirus software installed on the development

computer
• slrtroot — The location where Simulink Real-Time is installed
• TargetSettings — The current target computer settings
• Compiler — The name of the compiler installed on the development computer
• CompilerPath — The location of the compiler installed on the development computer
• Kernelnames, Kernelinfo — Internal kernel information
• ArpEntries, Selfping, DosTargetPing, ArpEntriesAfterPing — Kernel

communication information
• getPCIInfo — Information about devices on the target computer PCI bus
• cpuInfo — Information about the target computer CPU
• crashStatus — 1 if the target computer had a fatal error, and otherwise 0.
• crashInfo — Information about the fatal error if the target computer had a fatal

error, and otherwise does not appear.

6-69



6 MATLAB API

See Also

See Also
Crash Info

Topics
“Find Simulink Real-Time Support”

Introduced in R2014a

6-70



 SimulinkRealTime.getTargetSettings

SimulinkRealTime.getTargetSettings
Get target computer environment settings

Syntax

SimulinkRealTime.getTargetSettings

SimulinkRealTime.getTargetSettings(target_computer_name)

settings_object = SimulinkRealTime.getTargetSettings( ___ )

SimulinkRealTime.getTargetSettings('-all')

settings_object_vector = SimulinkRealTime.getTargetSettings('-all')

Description

SimulinkRealTime.getTargetSettings displays the environment settings for the
default computer.

SimulinkRealTime.getTargetSettings(target_computer_name) displays the
environment settings for a particular target computer.

settings_object = SimulinkRealTime.getTargetSettings( ___ ) returns an
environment object representing a target computer.

SimulinkRealTime.getTargetSettings('-all') displays a list of environment
objects representing all defined target computers.

settings_object_vector = SimulinkRealTime.getTargetSettings('-all')

returns a vector of environment objects representing all target computers.

Examples

Display Settings for Default Target

Display environment settings for default target computer.

SimulinkRealTime.getTargetSettings

6-71



6 MATLAB API

Simulink Real-Time Target Settings

    Name                     : TargetPC1                     

    TargetRAMSizeMB          : Auto                          

    MaxModelSize             : 1MB                           

    SecondaryIDE             : off                           

    MulticoreSupport         : on                            

    LegacyMultiCoreConfig    : on                            

    USBSupport               : on                            

    ShowHardware             : off                           

    EthernetIndex            : 0                             

    TcpIpTargetAddress       : 10.10.10.15                   

    TcpIpTargetPort          : 22222                         

    TcpIpSubNetMask          : 255.255.255.0                 

    TcpIpGateway             : 255.255.255.255               

    TcpIpTargetDriver        : I8254x                        

    TcpIpTargetBusType       : PCI                           

    TargetScope              : Enabled                       

    TargetBoot               : NetworkBoot                   

    TargetMACAddress         : 00:01:29:55:3c:bb  

Display Settings for Specific Target

Display environment settings for a specific target computer.

SimulinkRealTime.getTargetSettings('TargetPC2')

Simulink Real-Time Target Settings

    Name                     : TargetPC2                     

    TargetRAMSizeMB          : Auto                          

    MaxModelSize             : 1MB                           

    SecondaryIDE             : off                           

    MulticoreSupport         : on                            

    LegacyMultiCoreConfig    : on                            

    USBSupport               : on                            

    ShowHardware             : off                           

    EthernetIndex            : 0                             

    TcpIpTargetAddress       : 10.10.10.30                   

6-72



 SimulinkRealTime.getTargetSettings

    TcpIpTargetPort          : 22222                         

    TcpIpSubNetMask          : 255.255.255.0                 

    TcpIpGateway             : 255.255.255.255               

    TcpIpTargetDriver        : I8254x                        

    TcpIpTargetBusType       : PCI                           

    TargetScope              : Enabled                       

    TargetBoot               : NetworkBoot                   

    TargetMACAddress         : 90:e2:ba:17:5d:15         

Display Settings for All Targets

Display environment settings for all target computers.

SimulinkRealTime.getTargetSettings('-all')

NumTargets: 2                             

Targets   : Name                 Communication Settings   . . .

            TargetPC1 (Default)  TcpIp:10.10.10.15:22222  . . .

            TargetPC2            TcpIp:10.10.10.30:22222  . . .

Simulink Real-Time Target Settings

    Name                     : TargetPC1                     

.

.

.

    TcpIpTargetAddress       : 10.10.10.15                   

.

.

.

    TargetBoot               : NetworkBoot                   

    TargetMACAddress         : 00:01:29:55:3c:bb             

Simulink Real-Time Target Settings

    Name                     : TargetPC2                     

.

.

.

6-73



6 MATLAB API

    TcpIpTargetAddress       : 10.10.10.30                   

.

.

.

    TargetBoot               : NetworkBoot                   

    TargetMACAddress         : 90:e2:ba:17:5d:15             

Access Settings for Specific Target

Retrieve an environment settings object for a specific target computer. Use it to access a
setting.

settings_object = SimulinkRealTime.getTargetSettings('TargetPC1');

settings_object.TcpIpTargetAddress

ans =

10.10.10.15

Access Settings for Multiple Targets

Loop through vector of environment settings objects. Print name and communication
settings.

sov = SimulinkRealTime.getTargetSettings('-all');

ii = 1;

while ii <= length(sov) 

   disp(sprintf('%s TcpIpTargetAddress is %s', ... 

        sov(ii).Name, sov(ii).TcpIpTargetAddress))

ii = ii + 1;

end

TargetPC1 TcpIpTargetAddress is 10.10.10.15

TargetPC2 TcpIpTargetAddress is 10.10.10.30

Input Arguments

target_computer_name — Name of target computer
character vector

The name-character vector of a target computer.
Example: 'TargetPC1'

6-74



 SimulinkRealTime.getTargetSettings

Data Types: char

Output Arguments

settings_object — Settings object representing target computer
SimulinkRealTime.targetSettings object

Object containing target computer environment settings.
Data Types: struct

settings_object_vector — Vector of settings objects representing target computers
vector

Vector of objects containing target computer environment settings representing one or
more target computers
Data Types: struct

See Also

See Also
Target Settings Properties

Introduced in R2014a

6-75



6 MATLAB API

SimulinkRealTime.pingTarget

Test communication between development and target computers

Syntax

SimulinkRealTime.pingTarget

SimulinkRealTime.pingTarget(target_computer_name)

Description

SimulinkRealTime.pingTarget without an argument returns success when the
development computer and the default target computer can communicate using the
settings for the default computer. Otherwise, it returns failed. If a communication
channel is open between the development and target computers, the function leaves it
open.

SimulinkRealTime.pingTarget(target_computer_name) returns success if the
development computer can communicate with target computer target_computer_name
using the settings for target computer target_computer_name. Otherwise, returns
failed. If a communication channel is open between the development and target
computers, the function leaves it open.

Enclose the argument in single quotes ('TargetPC1').

6-76



 SimulinkRealTime.pingTarget

Examples

Check Communication with Default Target Computer

SimulinkRealTime.pingTarget

Check Communication with Specified Target Computer

SimulinkRealTime.pingTarget('TargetPC1')

Input Arguments

target_computer_name — Name of specific target computer
'TargetPC1' | 'TargetPC2' | ...

Name property of a particular target computer environment object. The default name is
'TargetPC1'.

Example: TargetPC1

Data Types: char

See Also

Introduced in R2014a

6-77



6 MATLAB API

SimulinkRealTime.removeTarget

Remove target computer interface

Syntax

SimulinkRealTime.removeTarget(target_name)

Description

SimulinkRealTime.removeTarget(target_name) removes the definitions and
settings for the target computer represented by target_name from the system. The
target objects associated with that target become invalid.

If you remove the default target computer, the next target object becomes the default
target computer. Do not remove the last target computer.

Examples

Remove Target 'TargetPC2' from System

Remove the definitions and settings for 'TargetPC2' from the system.

SimulinkRealTime.removeTarget('TargetPC2')

Input Arguments

target_name — Name assigned to target computer
character vector
Example: 'TargetPC1'

Data Types: char

6-78



 SimulinkRealTime.removeTarget

See Also

See Also
SimulinkRealTime.addTarget | SimulinkRealTime.getTargetSettings

Introduced in R2014a

6-79



6 MATLAB API

SimulinkRealTime.etherCAT.filterNotifications
Display output from EtherCAT Get Notifications block in human-readable format

Syntax

SimulinkRealTime.etherCAT.filterNotifications()

SimulinkRealTime.etherCAT.filterNotifications(tlog, olog, suppress)

filtered_values = SimulinkRealTime.etherCAT.filterNotifications(

tlog, olog, suppress)

[filtered_values suppressed_values] =

SimulinkRealTime.etherCAT.filterNotifications(tlog, olog, suppress)

Description

SimulinkRealTime.etherCAT.filterNotifications() without arguments prints
the legal notification values and their text descriptions.

SimulinkRealTime.etherCAT.filterNotifications(tlog, olog, suppress)

extracts from olog the notification values that come from the EtherCAT Get
Notifications block, and from tlog, the times at which these values occurred.

If the suppress vector is nonempty, the function removes from the output list the
notification values that appear in the vector. For each code listed in the suppress
vector, the function prints the total number of occurrences and the time range over which
they occurred.

When you are debugging EtherCAT® issues, use this function. You must have advanced
knowledge about EtherCAT functionality.

filtered_values = SimulinkRealTime.etherCAT.filterNotifications(

tlog, olog, suppress) returns a structure vector containing the filtered values.

[filtered_values suppressed_values] =

SimulinkRealTime.etherCAT.filterNotifications(tlog, olog, suppress)

returns a structure vector containing the filtered values and a structure containing a
summary of the suppressed values.

6-80



 SimulinkRealTime.etherCAT.filterNotifications

Examples

Print Legal Notifications

Print the legal notification values and their text descriptions

SimulinkRealTime.etherCAT.filterNotifications

SimulinkRealTime.EtherCAT.filterNotifications

(     1): State changed

(     2): Cable connected

(     3): Scanbus finished

(     4): Distributed clocks initialized

(     5): DC slave synchronization deviation received

(     8): DCL initialized

(     9): DCM inSync

(    21): Successful slave state transition.

(   100): Queue raw command response notification

( 65537): Cyclic command: Working count error

( 65538): Master init command: Working count error

( 65539): Slave init command: Working count error

( 65540): EOE mbox receive: Working count error (deprecated)

( 65541): COE mbox receive: Working count error (deprecated)

( 65542): FOE mbox receive: Working count error (deprecated)

( 65543): EOE mbox send: Working count error

( 65544): COE mbox send: Working count error

( 65545): FOE mbox send: Working count error

( 65546): Frame response error: No response

( 65547): Slave init command: No response

( 65548): Master init command: No response

( 65550): Timeout when waiting for mailbox init command response

( 65551): Cyclic command: Not all slaves in op state

( 65552): Ethernet link (cable) not connected

( 65554): Redundancy: Line break detected

( 65555): Cyclic command: A slave is in error state

( 65556): Slave error status change

( 65557): Station address lost (or slave missing) - FPRD to ...

          AL_STATUS failed 

( 65558): SOE mbox receive: Working count error (deprecated)

( 65559): SOE mbox send: Working count error

( 65560): SOE mbox write responded with an error

( 65561): COE mbox SDO abort

( 65562): Client registration dropped, possibly call to ...

          ecatConfigureMaster by other thread (RAS)

6-81



6 MATLAB API

( 65563): Redundancy: Line is repaired

( 65564): FOE mbox abort

( 65565): Invalid mail box data received

( 65566): PDI watchdog expired on slave, thrown by IST

( 65567): Slave not supported (if redundancy is activated and ...

          slave doesn't fully support autoclose

( 65568): Slave in unexpected state

( 65569): All slave devices are in operational state

( 65570): VOE mbox send: Working count error

( 65571): EEPROM checksum error detected

( 65572): Crossed lines detected

( 65573): Junction redundancy change

(196610): ScanBus mismatch

(196611): ScanBus mismatch. A duplicate HC group was detected

(262146): HC enhance detect all groups done

(262147): HC probe all groups done

(262148): HC topology change done

(262149): Slave disappears

(262150): Slave appears

Print Notifications from Normal Operation

Print the notifications that appear during normal operation.

In this example, the output signals from the EtherCAT Get Notifications block are at
signal indexes 1:21. Pass in an empty suppress vector.

tlog = tg.TimeLog;

olog = tg.OutputLog(:, 1:21);

SimulinkRealTime.etherCAT.filterNotifications(tlog, olog, [])

 Time        Notification

0.010750 (     3) Scanbus Finished

0.012750 (     1) State Change

0.022500 (     1) State Change

0.590500 (     5) DC Slave Synchronization deviation received

0.591000 (     4) Distributed clocks initialized

0.715500 (     1) State Change

1.216250 (     1) State Change

         ( 65569) All slave devices are in operational state

Print Filtered Notifications from Normal Operation

Filter and print the notifications that appear during normal operation. Filter notification
( 1) State Change.

6-82



 SimulinkRealTime.etherCAT.filterNotifications

In this example, the output signals from the EtherCAT Get Notifications block are at
signal indexes 1:21.

tlog = tg.TimeLog;

olog = tg.OutputLog(:, 1:21);

SimulinkRealTime.etherCAT.filterNotifications( tlog, olog, [1]);

 Time        Notification

0.010750 (     3) Scanbus Finished

0.590500 (     5) DC Slave Synchronization deviation received

0.591000 (     4) Distributed clocks initialized

         ( 65569) All slave devices are in operational state

1: 4 times [0.012750 : 1.216250]

State Change

Return Notifications from Normal Operation

Return as a vector the notifications that appear during normal operation.

In this example, the output signals from the EtherCAT Get Notifications block are at
signal indexes 1–21. Pass in an empty suppress vector.

tlog = tg.TimeLog;

olog = tg.OutputLog(:, 1:21);

filtered_values = ...

    SimulinkRealTime.etherCAT.filterNotifications(tlog, olog, [])

filtered)values = 

  1×7 struct array with fields:

    time

    code

    notifystring

Return Filtered Notifications from Normal Operation

Filter and return the notifications that appear during normal operation. Filter
notification ( 1) State Change.

In this example, the output signals from the EtherCAT Get Notifications block are at
signal indexes 1:21.

tlog = tg.TimeLog;

olog = tg.OutputLog(:, 1:21);

[filtered_values suppressed_values] = ...

6-83



6 MATLAB API

    SimulinkRealTime.etherCAT.filterNotifications(tlog, olog, [1])

filtered_values = 

  1×3 struct array with fields:

    time

    code

    notifystring

suppressed_values = 

  struct with fields:

      val: 1

    first: 0.013000000000000

     last: 1.216500000000000

    count: 4

Input Arguments

tlog — Time log on target computer
vector

Read tg.TimeLog from the target computer.

Example: tg.TimeLog

Data Types: double

olog — Output log on target computer
matrix

Read tg.OutputLog from the target computer.

Example: tg.OutputLog

Data Types: double

suppress — List of notification codes to omit from the line-by-line report
vector

For each code, the function reports the total number of occurrences and the time range
over which they occurred. If you do not want to suppress notification codes, pass in an
empty vector ([]).

Example: 65546

6-84



 SimulinkRealTime.etherCAT.filterNotifications

Example: []
Data Types: double

Output Arguments

filtered_values — Return filtered values as a structure vector
vector

Each element of filtered_values is a structure containing:

• time (double) — Timestamp of notify code
• code (double) — Notify code
• notifystring (character vector) — Text description

suppressed_values — Return suppressed codes as a structure vector
vector

Each element of suppressed_values is a structure containing:

• val (double) — Notify code
• first (double) — Timestamp of first occurrence
• last (double) — Timestamp of last occurrence
• count (double) — Number of instances found

Tips

• To retrieve the notifications, in the Command Window, read tg.OutputLog and
tg.TimeLog from the target computer.

• Determine which tg.OutputLog columns to pass into
SimulinkRealTime.etherCAT.filterNotifications.

• If you connected the EtherCAT Get Notifications block to the first Outport block,
the 21 notification signals appear in columns 1:21 of the tg.OutputLog matrix.

• To determine which columns of tg.OutputLog come from the EtherCAT Get
Notifications block, set tg.ShowSignals to 'on'. From the resulting information,
determine the relevant columns.

6-85



6 MATLAB API

• Common error conditions, such as an unplugged Ethernet cable, can cause thousands
of unwanted notifications that hide useful notifications. To filter unwanted
notifications, use the suppress vector.

• The EtherCAT Get Notifications block can quickly increase the size of the output log.
In the Simulink Real-Time Options pane, if the value of Signal logging data
buffer size in doubles is too small, the log wraps and overwrites the oldest data,
which can contain important diagnostic information.

See Also

See Also
EtherCAT Get Notifications

Introduced in R2017a

6-86



 SimulinkRealTime.utils.bytes2file

SimulinkRealTime.utils.bytes2file

Generate file for use by real-time From File block

Syntax

SimulinkRealTime.utils.bytes2file(filename, var1, . . , varX)

Description

SimulinkRealTime.utils.bytes2file(filename, var1, . . , varX)

generates a file for use by the real-time From File block. The From File block outputs one
column of variables var1, . . , varX from file filename at every time step.

Variables var1, . . , varX must be matrices in column-major format and have the
same number of columns. The number of rows and the data types of the matrix elements
can be different.

Data sometimes appears in row-major format (a row, not a column, refers
to a time step). In such cases, transpose the variable and pass the result to
SimulinkRealTime.utils.bytes2file. To optimize file writes, organize the data in
columns.

Examples

Errorval and Velocity in Column-Major Format

From File outputs two variables errorval and velocity at every time step from 1 to N.
Each variable is in column-major format.

Variable errorval has class 'single' and dimensions [1 x N]. Variable velocity
has class 'double' and dimensions [3 x N].

SimulinkRealTime.utils.bytes2file('myfile', errorval, velocity)

6-87



6 MATLAB API

Configure the real-time From File block to output 28 bytes at every sample time ((1 *
sizeof('single') + 3 * sizeof('double'))).

Errorval and Velocity in Row-Major Format

From File outputs two variables errorval and velocity at every time step from 1 to N.
Each variable is in row-major format.

Variable errorval has class 'single' and dimensions [N x 1]. Variable velocity
has class 'double' and dimensions [N x 3].

SimulinkRealTime.utils.bytes2file('myfile', ...

                                  transpose(errorval), ...

                                  transpose(velocity));

Configure the real-time From File block to output 28 bytes at every sample time ((1 *
sizeof('single') + 3 * sizeof('double'))).

Input Arguments

filename — Name of the data file
character vector

The data file contains columns of data to be output to the model.
Example: 'myfile'

Data Types: char

var1, . . , varX — X arguments, each in column-major format
real and integer

The X arguments each provide columns of data to be output to the model.
Example: errorval, velocity

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

See Also

See Also
From File

6-88



 SimulinkRealTime.utils.bytes2file

Introduced in R2014a

6-89



6 MATLAB API

SimulinkRealTime.utils.createInstrumentationModel
Construct skeleton for user interface model

Syntax

SimulinkRealTime.utils.createInstrumentationModel(system_name)

Description

SimulinkRealTime.utils.createInstrumentationModel(system_name)

generates a skeleton Simulink instrumentation model containing To Target and From
Target blocks. The model is based on tagged block parameters and tagged signals
defined in the Simulink Real-Time model used to build the real-time application.

Examples

Generate an Interface Model

SimulinkRealTime.utils.createInstrumentationModel('xpcosc')

Input Arguments

system_name — Name of system for which to create an interface model
'xpcosc'

Model must contain tagged signals or block parameters.
Data Types: char

See Also

Introduced in R2014a

6-90



 SimulinkRealTime.utils.getConsoleLog

SimulinkRealTime.utils.getConsoleLog

Retrieve the log that the kernel writes to the target computer screen

Syntax

console_log = SimulinkRealTime.utils.getConsoleLog

console_log = SimulinkRealTime.utils.getConsoleLog(line_number)

console_log = SimulinkRealTime.utils.getConsoleLog(target_object,

___ )

console_log = SimulinkRealTime.utils.getConsoleLog(target_name, ___ )

Description

console_log = SimulinkRealTime.utils.getConsoleLog returns the text lines
that the default target computer displayed on its screen.

If the computer displayed more than 500 lines, the function returns the last 500 lines.

console_log = SimulinkRealTime.utils.getConsoleLog(line_number)

returns the text lines that the default target computer displayed on its screen, starting
from line_number.

• If the computer displayed more than 500 lines after line_number, the function
returns the last 500 lines.

• If line_number is greater than the number of lines that the target computer
displayed, the function returns an empty vector.

console_log = SimulinkRealTime.utils.getConsoleLog(target_object,

___ ) returns the text lines that the target computer represented by target_object
displayed on its screen.

console_log = SimulinkRealTime.utils.getConsoleLog(target_name, ___ )

returns the text lines that target computer target_name displayed on its screen.

6-91



6 MATLAB API

Examples

Read Log for Default Computer and Default Line Number

Reads log for default computer starting from line 0.

console_log = SimulinkRealTime.utils.getConsoleLog

console_log =

1×13 struct array with fields:

sequence

attrib

text

console_log(1)

ans =

struct with fields:

sequence: 0

attrib: 0

text: 'Starting up with 1 CPU'

Read Log for Default Computer and Explicit Line Number

Reads log for default computer starting from line 5.

console_log = SimulinkRealTime.utils.getConsoleLog(5)

console_log =

1×8 struct array with fields:

sequence

attrib

text

console_log(1)

ans =

6-92



 SimulinkRealTime.utils.getConsoleLog

struct with fields:

sequence: 5

attrib: 0

text: 'Download finished'

Read Log by Target Object and Explicit Line Number

Reads log for target computer represented by target_object, starting from line 5.

console_log = ...

    SimulinkRealTime.utils.getConsoleLog(target_object, 5)

console_log =

1×8 struct array with fields:

sequence

attrib

text

console_log(1)

ans =

struct with fields:

sequence: 5

attrib: 0

text: 'Download finished'

Read Log by Target Name and Out-of-Range Line Number

Reads log for target computer 'TargetPC1', starting from line 50.

console_log = SimulinkRealTime.utils.getConsoleLog('TargetPC1', 50)

console_log =

1×0 empty struct array with fields:

sequence

attrib

6-93



6 MATLAB API

text

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

target_name — Name assigned to target computer
character vector
Example: 'TargetPC1'

Data Types: char

line_number — Target computer message line number
0 (default) | integer

Target computer message line number, starting from 0.

• If the computer printed more than 500 lines after line_number, the function returns
the last 500 lines.

• If line_number is greater than the number of lines that the target computer printed,
the function returns an empty vector.

Example: 5

Output Arguments

console_log — Lines printed to target computer screen
vector of struct

The function returns the console log as a vector of structures consisting of the following
fields:

6-94



 SimulinkRealTime.utils.getConsoleLog

• sequence — The line number in the log, counting from the last time that the target
computer restarted.

• attrib — Whether the message was an error (2), a warning (1), or an informational
message (0).

• text — The line text, as the target computer printed it to the screen.

See Also

Introduced in R2017a

6-95



6 MATLAB API

SimulinkRealTime.utils.getFileScopeData
Read real-time Scope file format data

Syntax

matlab_data = SimulinkRealTime.utils.getFileScopeData(slrtfile_name)

matlab_data = SimulinkRealTime.utils.getFileScopeData(slrtfile_data)

Description

matlab_data = SimulinkRealTime.utils.getFileScopeData(slrtfile_name)

takes as an argument the name of a development computer file containing a vector of
byte data (uint8). Before using this function, copy the file from the target computer
using the SimulinkRealTime.copyFileToHost method.

matlab_data = SimulinkRealTime.utils.getFileScopeData(slrtfile_data)

takes as an argument a MATLAB variable containing a vector of byte data (uint8).
Before using this function, load the data into memory from a file on the target file system
using the SimulinkRealTime.fileSystem.fread method.

Examples

Read File and Plot Results

Upload file 'data.dat' to the host. Read the file on the host. Plot the results.

Upload file 'data.dat' from the target computer to the development computer.

SimulinkRealTime.copyFileToHost('data.dat')

Read the file and process its data into MATLAB format.

matlab_data = SimulinkRealTime.utils.getFileScopeData('data.dat');

Plot the signal data (column 1) on the Y axis against time (column 2) on the X axis.

plot(matlab_data.data(:,2), matlab_data.data(:,1))

xlabel(matlab_data.signalNames(2))

6-96



 SimulinkRealTime.utils.getFileScopeData

ylabel(matlab_data.signalNames(1))

Store, Convert, and Plot Results

Read file 'data.dat' on the target computer from the host. Store the data in a
MATLAB workspace variable. Convert the data to MATLAB format. Plot the results.

Read file 'data.dat' from the development computer using file system commands.

fs = SimulinkRealTime.fileSystem;

h = fopen(fs, 'data.dat');

slrtfile_data = fread(fs, h);

fclose(fs,h)

Process data from the workspace variable into MATLAB format.

matlab_data = 

     SimulinkRealTime.utils.getFileScopeData(slrtfile_data);

Plot the signal data (column 1) on the Y axis against time (column 2) on the X axis.

plot(matlab_data.data(:,2), matlab_data.data(:,1))

xlabel(matlab_data.signalNames(2))

ylabel(matlab_data.signalNames(1))

Input Arguments

slrtfile_name — Name of file from which to read real-time Scope file format data
'data.dat'

File must contain a vector of uint8 data.

Data Types: char

slrtfile_data — Workspace variable containing real-time Scope file format data
vector
Data Types: uint8

Output Arguments

matlab_data — State and time data for plotting
structure

6-97



6 MATLAB API

The state and time data is stored in a structure containing six fields. The key fields are
numSignals, data, and signalNames.

version — Version code
0 (default) | double

Internal

sector — Sector of data file
0 (default) | double

Internal

headersize — Number of bytes of data file header
512 (default) | double

Internal

numSignals — Number of columns containing signal and time data
double

If N signals are connected to the real-time Scope block, numSignals = N + 1.

data — Columns containing signal and time data
double array

The data array contains numSignals columns. The first N columns represent signal
state data. The last column contains the time at which the state data is captured.

The data array contains as many rows as there are data points.

signalNames — Names of columns containing signal and time data
cell vector

The signalNames vector contains numSignals elements. The first N elements are signal
names. The last element is the character vector Time.

See Also

See Also
File System | Scope | SimulinkRealTime.copyFileToHost

6-98



 SimulinkRealTime.utils.getFileScopeData

Introduced in R2014a

6-99



6 MATLAB API

SimulinkRealTime.utils.getTargetSystemTime

Gets the current value of the target computer system clock

Syntax

date_vector = SimulinkRealTime.utils.getTargetSystemTime

date_vector = SimulinkRealTime.utils.getTargetSystemTime(

target_object)

Description

date_vector = SimulinkRealTime.utils.getTargetSystemTime returns the
system time of the default target computer as a date vector. The target computer must be
running and in communication with the development computer.

date_vector = SimulinkRealTime.utils.getTargetSystemTime(

target_object) returns the system time of the specified target computer as a date
vector.

Examples

Get System Time of Default Target Computer

Return the system time of the default target computer as a date vector.

date_vector = SimulinkRealTime.utils.getTargetSystemTime

date_vector =

  Columns 1 through 4

        2015          11           4          14

  Columns 5 through 6

6-100



 SimulinkRealTime.utils.getTargetSystemTime

          37          34

Get System Time of Specified Target Computer

Return the system time of target computer 'TargetPC1' as a date vector.

target_object = SimulinkRealTime.target('TargetPC1');

date_vector = ...

     SimulinkRealTime.utils.getTargetSystemTime(target_object)

date_vector =

  Columns 1 through 4

        2015          11           4          14

  Columns 5 through 6

          39          45

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

Output Arguments

date_vector — Date and time vector
datevec

Date and time as returned by the datevec function

Example: [2015, 11, 5, 14, 15, 0]

6-101



6 MATLAB API

Data Types: double

See Also

See Also
SimulinkRealTime.utils.setTargetSystemTime

Introduced in R2016a

6-102



 SimulinkRealTime.utils.minimumSampleTime

SimulinkRealTime.utils.minimumSampleTime
Determine the minimum sample time at which a model can run

Syntax

minTs = SimulinkRealTime.utils.minimumSampleTime(model_name)

minTs = SimulinkRealTime.utils.minimumSampleTime(model_name, '-

cleanup')

Description

minTs = SimulinkRealTime.utils.minimumSampleTime(model_name) executes
the model in real time on a target computer and returns the minimum sample time at
which it can run.

The target computer must be running and connected to the development computer. The
function builds the model and downloads it automatically to the target computer.

minTs = SimulinkRealTime.utils.minimumSampleTime(model_name, '-

cleanup') executes the model in real time on a target computer and returns the
minimum sample time at which it can run.

The target computer must be running and connected to the development computer. The
function builds the model and downloads it automatically to the target computer. When
execution is complete, the function deletes the build files.

Examples

Determine Minimum Sample Time

Determines the minimum sample time of model xpcosc.

minTs = SimulinkRealTime.utils.minimumSampleTime('xpcosc')

minTs =

6-103



6 MATLAB API

   8.4727e-06

To avoid CPU overruns, set your model sample time to a value slightly above the lower
limit, for example to 10e-6.

Determine Minimum Sample Time and Delete Build Files

Determines the minimum sample time of model xpcosc, and then cleans up the build
folder.

minTs = SimulinkRealTime.utils.minimumSampleTime('xpcosc', ...

        '-cleanup')

minTs =

   8.4727e-06

To avoid CPU overruns, set your model sample time to a value slightly above the lower
limit, for example to 10e-6.

Input Arguments

model_name — Name of the model
character vector

Enclose the model name character vector in single quotation marks.
Example: 'xpcosc'

Data Types: char

Output Arguments

minTs — Minimum sample time
double

The minimum sample time at which the function executed the model. To avoid the
overloads that random variations can cause, set your model sample time to a value
slightly above the minimum sample time.

6-104



 SimulinkRealTime.utils.minimumSampleTime

See Also

Topics
“Profiling and Optimization”
“Improve Performance of Multirate Model”

Introduced in R2016a

6-105



6 MATLAB API

SimulinkRealTime.utils.setTargetSystemTime
Sets the value of the target computer system clock

Syntax

SimulinkRealTime.utils.setTargetSystemTime

SimulinkRealTime.utils.setTargetSystemTime(date_vector)

SimulinkRealTime.utils.setTargetSystemTime(target_object, ___ )

Description

SimulinkRealTime.utils.setTargetSystemTime sets the default target computer
system time to the current value of the development computer system time (UTC). The
target computer must be running and in communication with the development computer.
You do not have to use the target computer keyboard or restart the target computer.

SimulinkRealTime.utils.setTargetSystemTime(date_vector) sets the default
target computer system time to the specified value, passed as a date vector.

SimulinkRealTime.utils.setTargetSystemTime(target_object, ___ ) sets
the specified target computer system time to the specified value, passed as a date vector.

Examples

Set Default Target Computer System Time to Development Computer System Time

Change system time of default target computer to the development computer system
time

Show original system time.

date_vector = SimulinkRealTime.utils.getTargetSystemTime

date_vector =

  Columns 1 through 4

6-106



 SimulinkRealTime.utils.setTargetSystemTime

        2015          11           4          19

  Columns 5 through 6

          15          56

Change system time.

SimulinkRealTime.utils.setTargetSystemTime;

Show new system time.

date_vector = SimulinkRealTime.utils.getTargetSystemTime

date_vector =

  Columns 1 through 4

        2015          11           4          19

  Columns 5 through 6

          15          57

Set Default Target Computer System Time to Specified System Time

Change system time of default target computer to the specified system time

Show original system time.

date_vector = SimulinkRealTime.utils.getTargetSystemTime

date_vector =

  Columns 1 through 4

        2015          11           4          19

  Columns 5 through 6

          15          57

Change system time to

new_date_vector = [2015, 11, 5, 14, 15, 0];

6-107



6 MATLAB API

SimulinkRealTime.utils.setTargetSystemTime(new_date_vector);

Show new system time.

date_vector = SimulinkRealTime.utils.getTargetSystemTime

date_vector =

  Columns 1 through 4

        2015          11           5          14

  Columns 5 through 6

          15           0

Set Specified Target Computer System Time to Development Computer System Time

Change system time of target computer 'TargetPC1' to the development computer
system time

Show original system time.

target_object = SimulinkRealTime.target('TargetPC1');

date_vector = ...

     SimulinkRealTime.utils.getTargetSystemTime(target_object)

date_vector =

  Columns 1 through 4

        2015          11           5          14

  Columns 5 through 6

          15           0

Change system time.

SimulinkRealTime.utils.setTargetSystemTime(target_object);

Show new system time.

date_vector = ...

     SimulinkRealTime.utils.getTargetSystemTime(target_object)

6-108



 SimulinkRealTime.utils.setTargetSystemTime

date_vector =

  Columns 1 through 4

        2015          11           4          19

  Columns 5 through 6

          15          57

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

date_vector — Date and time vector
datevec

Date and time as returned by the datevec function

Example: [2015, 11, 5, 14, 15, 0]

Data Types: double

See Also

See Also
SimulinkRealTime.utils.getTargetSystemTime

Introduced in R2016a

6-109



6 MATLAB API

Target Settings Properties
Settings related to target computer

Description

This object defines the settings for the target computer.

The settings define the communication link between the development and target
computers and the properties of the target boot image created during the setup process.

Note:

• Support for using ISA bus Ethernet cards to communicate between the development
and target computers has ceased to function. Use PCI bus or USB bus Ethernet cards
instead.

• The NonPentiumSupport property has ceased to function. Use a target computer
with an Intel® Pentium or AMD® K5/K6/Athlon processor.

• In R2017b, the property SecondaryIDE will be removed from the product. The
Secondary IDE option has been removed from Simulink Real-Time Explorer. Install
a SATA hard drive in the target computer.

• In R2017b, the MulticoreSupport target setting will be read-only and set to 'on'.
The Multicore CPU check box will be removed from Simulink Real-Time Explorer.

• In R2017b, the property MaxModelSize will be removed. The property has ceased
to function. The Model Size option has been removed from Simulink Real-Time
Explorer.

• The RAM size check box has been removed from Simulink Real-Time Explorer. The
property value TargetRAMSizeMB continues to function.

To create a target computer settings object that is set to default values, use the syntax
target_object = SimulinkRealTime.addTarget(target_name).

target_object = SimulinkRealTime.addTarget('TargetPC3')

Simulink Real-Time Target Settings

6-110



 Target Settings Properties

    Name                     : TargetPC3                     

    TargetRAMSizeMB          : Auto                          

    MulticoreSupport         : on                            

    LegacyMultiCoreConfig    : on                            

    USBSupport               : on                            

    ShowHardware             : off                           

    EthernetIndex            : 0                             

    TcpIpTargetAddress       :                               

    TcpIpTargetPort          : 22222                         

    TcpIpSubNetMask          : 255.255.255.0                 

    TcpIpGateway             : 255.255.255.255               

    TcpIpTargetDriver        : Auto                          

    TcpIpTargetBusType       : PCI                           

    TargetScope              : Enabled                       

    TargetBoot               : BootFloppy                    

    BootFloppyLocation       : 

The default settings are incomplete. At a minimum, you must assign a value to
TcpIpTargetAddress. To change this setting by assignment, use the syntax
target_object.property_name = value.

target_object = SimulinkRealTime.getTargetSettings('TargetPC3');

target_object.TcpIpTargetAddress = '10.10.10.15';

To read an existing setting, use the syntax value = target_object.property_name.

target_object = SimulinkRealTime.getTargetSettings('TargetPC3');

value = target_object.TcpIpTargetAddress

value =

10.10.10.15

To mark a target computer as the default computer, use the syntax
setAsDefaultTarget(target_object).

target_object = SimulinkRealTime.getTargetSettings('TargetPC3');

setAsDefaultTarget(target_object)

To access the target computer settings in Simulink Real-Time Explorer:

6-111



6 MATLAB API

1 In the Targets pane, expand a target computer node.
2 In the toolbar, click the Target Properties button  .
3 Expand the sections Host-to-Target communication, Target settings, or Boot

configuration.

Host-to-Target Communication

TcpIpGateway — IP address for gateway to Ethernet link
'255.255.255.255' (default) | 'xxx.xxx.xxx.xxx'

If your development and target computers connect through a LAN that uses a gateway,
you must enter a value for this property.

The default value, 255.255.255.255, means that a gateway is not used to connect to
the target computer. If your LAN does not use gateways, you do not need to change this
property. Consult your system administrator for this value.

In the Simulink Real-Time Explorer Gateway box, type the IP address for your gateway.
Example: env_object.TcpIpGateway = '192.168.1.1'

TcpIpSubNetMask — Subnet mask for gateway to Ethernet link
'xxx.xxx.xxx.xxx'

In the Simulink Real-Time Explorer Subnet mask box, type the subnet mask of your
LAN. Consult your system administrator for this value.
Example: env_object.TcpIpSubNetMask = '255.255.255.0'

TcpIpTargetAddress — IP address for target computer
'xxx.xxx.xxx.xxx'

In the Simulink Real-Time Explorer IP address box, type a valid IP address for your
target computer. Consult your system administrator for this value.
Example: env_object.TcpIpTargetAddress = '192.168.1.10'

TcpIpTargetBusType — Bus type for Ethernet card on target computer
'PCI' (default) | 'USB'

This property determines the bus type of your target computer. You do not need to define
a bus type for your development computer.

6-112



 Target Settings Properties

In the Simulink Real-Time Explorer Bus type list, select one of PCI or USB.

Example: env_object.TcpIpTargetBusType = 'USB'

TcpIpTargetDriver — Driver for Ethernet card on target computer
'Auto' (default) | 'I8254x' | 'I82559' | 'R8139' | 'R8168' | 'USBAX772' |
'USBAX172'

If the target computer contains only one supported Ethernet card, use the default value
('Auto').

If you are using bus type 'USB', use 'USBAX772' or 'USBAX172'.

In the Simulink Real-Time Explorer Target driver list, select one of INTEL_I8254x,
INTEL_I82559, R8139, R8168, USBAX772, USBAX172, or Auto.

Example: env_object.TcpIpTargetDriver = 'USBAX172'

TcpIpTargetPort — Ethernet port on target computer
'22222'. (default) | 'xxxxx'

Typically, you do not change this value from the default. Do so only if you are using the
default port ('22222') for other purposes.

Use an Ethernet port greater than '20000'. Values in this range are higher than the
reserved area (telnet, ftp, . . .).

Example: env_object.TcpIpTargetPort = '24000'

Target settings

EthernetIndex — Zero-based index number of Ethernet card on target computer
'0' (default) | 'n'

Unique number identifying an Ethernet card on the target computer. If the target
computer has multiple Ethernet cards, you must select one of the cards for the Ethernet
link. This option returns the index number of the card selected on the target computer
upon starting.
Example: env_object.EthernetIndex = '2'

LegacyMultiCoreConfig — Use existing multiprocessor floating pointer structure (MPFPS)
in the BIOS
'on' (default) | 'off'

6-113



6 MATLAB API

When this value is 'on', the kernel uses the existing multiprocessor floating pointer
structure (MPFPS) in the BIOS. When this value is 'off', the kernel uses the Advanced
Configuration and Power Interface (ACPI) to query the hardware boards. The kernel uses
that information to construct an MPFPS structure.

Set this value to 'off' only if your multicore target computer is fully compliant with the
ACPI standard.
Example: env_object.LegacyMultiCoreConfig = 'off'

MaxModelSize — Maximum expected size of real-time application
'1MB' (default) | '4MB' | '16MB'

The maximum model size reserves the specified amount of memory on the target
computer for the real-time application. Memory not used by the real-time application is
used by the kernel and by the heap for data logging.

Selecting too high a value leaves less memory for data logging. Selecting too low a value
does not reserve enough memory for the real-time application and creates an error. You
can approximate the size of the real-time application by the size of the DLM file produced
by the build process.

In the Simulink Real-Time Explorer Model size list, select one of 1 MB, 4 MB, or 16 MB.

Setting Model size is enabled for Boot mode Stand Alone only.

Example: env_object.MaxModelSize = '4MB'

MulticoreSupport — Enable use of multicore processors
'on' (default) | 'off'

Use multicore support only for a multicore target computer.

In the Simulink Real-Time Explorer, leave the Multicore CPU check box selected to
take advantage of these processors for background tasks. Otherwise, clear it.
Example: env_object.MulticoreSupport = 'off'

Name — Target computer name character vector
'TargetPCN' (default) | character vector

When you create a target settings object, the software assigns it a name of the form
'TargetPCN+1'. 'TargetPCN' is the previously assigned name. You can assign a new
name from the Command Window.

6-114



 Target Settings Properties

To rename the target computer in Simulink Real-Time Explorer, right-click the target
computer node in the MATLAB Session tree, click Rename, and type the new name in
the Target environment name box.
Example: env_object.Name = 'NewTarget'

SecondaryIDE — Enable secondary IDE disk controller
'off' (default) | 'on'

Set only if you want to use disks connected to a secondary IDE controller.
Example: env_object.SecondaryIDE = 'on'

ShowHardware — Display Ethernet card information for target computer
'off' (default) | 'on'

To display Ethernet card information on the target monitor, set ShowHardware to 'on'
and then start the target computer. The target computer monitor displays the index, bus,
slot, function, and target driver for each Ethernet card.

With ShowHardware set, after the kernel starts, the development computer cannot
communicate with the target computer. When you have gathered your information, to
resume normal functionality, set this property to 'off', recreate the boot image, and
restart the target computer.
Example: env_object.ShowHardware = 'on'

TargetRAMSizeMB — Megabytes of RAM installed in target computer
'Auto' (default) | 'xxx'

Specifies the total amount of RAM, in megabytes, installed in the target computer.
Target computer RAM is used for the kernel, real-time application, data logging, and
other functions that use the heap.

If this property is set to 'Auto', the real-time application reads the target computer
BIOS and determines the amount of memory installed in the target computer.

To allow the real-time application to determine the amount of memory in Simulink
Real-Time Explorer, click RAM size Auto. If the real-time application cannot read the
BIOS, click Manual and type into the Size(MB) box the amount of RAM, in megabytes,
installed in the target computer.

Target computer memory for the real-time application executable, the kernel, and other
uses is limited to a maximum of 4 GB.

6-115



6 MATLAB API

Example: env_object.ShowHardware = '2000'

TargetScope — Display scope information graphically
'Enabled' (default) | 'Disabled'

When this property is set to 'Enabled', the target computer shows a graphical window
display. When set to 'Disabled', the target computer shows a text-based view.

When the graphical display is present, you can use target scopes to view signal data
graphically on the target display. You cannot use target scopes when the text-based view
is present.

Using Simulink Real-Time Explorer, to display scope information graphically, set the
Graphics mode check box.

To display scope information as text, clear the Graphics mode check box.

To use the full features of a target scope, install a keyboard on the target computer.
Example: env_object.TargetScope = 'Disabled'

USBSupport — Enable USB port on target computer
'on' (default) | 'off'

Set this property to use a USB port on the target computer, for example to connect a USB
mouse.

In Simulink Real-Time Explorer, to enable a USB port, select the USB Support check
box. Otherwise, clear it.
Example: env_object.USBSupport = 'off'

Boot configuration

BootFloppyLocation — Drive name for creation of target boot disk
character vector

To create a removable boot disk when the system default drive does not work, set this
property.
Example: env_object.BootFloppyLocation='D:\'

DOSLoaderLocation — Location of DOS Loader files to start target computers from devices
other than floppy disk or CD
character vector

6-116



 Target Settings Properties

Set this property in DOS Loader mode if the default location does not work.
Example: env_object.DOSLoaderLocation='D:\Dosloader'

TargetBoot — Mode of restarting target computer
'BootFloppy' (default) | 'CDBoot' | 'DOSLoader' | 'NetworkBoot' |
'StandAlone'

After making the required target settings, to create a bootable image, type
SimulinkRealTime.createTargetImage.

In Simulink Real-Time Explorer, to create a bootable image for the specified boot mode,
click Create boot disk.
Example: env_object.TargetBoot='NetworkBoot'

TargetMACAddress — Target computer MAC address for network restart
'xx:xx:xx:xx:xx:xx'

Physical target computer MAC address from which to accept start requests when
starting within a dedicated network.

To update the MAC address in Simulink Real-Time Explorer, first click the Reset button
in the Target Properties pane. You can then click the Specify new MAC address
button to enter a MAC address manually in the MAC address box. If you do not enter a
MAC address manually, the software obtains the MAC address the next time you restart
the target computer.
Example: env_object.TargetMACAddress='90:e2:ba:17:5d:15'

See Also

See Also
SimulinkRealTime.addTarget | SimulinkRealTime.getTargetSettings |
SimulinkRealTime.targetSettings.setAsDefaultTarget

Topics
“PCI Bus Ethernet Setup”
“USB-to-Ethernet Setup”
“Target Computer Settings”

6-117



6 MATLAB API

“Target Computer Boot Methods”

Introduced in R2014a

6-118



 SimulinkRealTime.targetSettings.setAsDefaultTarget

SimulinkRealTime.targetSettings.setAsDefaultTarget
Set specific target computer as default target computer

Syntax
setAsDefaultTarget(settings_object)

Description
setAsDefaultTarget(settings_object) marks the target computer represented by
the target settings object as the default target computer.

Examples
Make Target Computer 'TargetPC1' the Default

Get the target settings object for target computer 'TargetPC1' and make that target
computer the default target computer.

settings_object = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(settings_object)

Input Arguments
settings_object — Settings object representing target computer
SimulinkRealTime.targetSettings object

Object containing target computer environment settings.
Data Types: struct

See Also

See Also
SimulinkRealTime.addTarget | SimulinkRealTime.getTargetSettings

6-119



6 MATLAB API

Introduced in R2014a

6-120



 File System

File System
Manage folders and files on target computer

Description

The SimulinkRealTime.fileSystem object provides access to folders and files on the
target computer.

The following limitations hold:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

Create Object

SimulinkRealTime.fileSystem

Object Functions
SimulinkRealTime.fileSystem.cd Change folder on target computer
SimulinkRealTime.fileSystem.dir List contents of folder on target computer
SimulinkRealTime.fileSystem.diskinfo Target computer drive information
SimulinkRealTime.fileSystem.diskspace Return the free space and total space on the

drive, in bytes
SimulinkRealTime.fileSystem.fclose Close target computer file
SimulinkRealTime.fileSystem.fileinfo Target computer file information

6-121



6 MATLAB API

SimulinkRealTime.fileSystem.filetable Information about open files in target
computer file system

SimulinkRealTime.fileSystem.fopen Open target computer file for reading and
writing

SimulinkRealTime.fileSystem.fread Read open target computer file
SimulinkRealTime.fileSystem.fwrite Write binary data to open target computer

file
SimulinkRealTime.fileSystem.getfilesize Size of file on target computer
SimulinkRealTime.fileSystem.mkdir Create folder on target computer
SimulinkRealTime.fileSystem.pwd Path to currently active folder on target

computer
SimulinkRealTime.fileSystem.removefile Remove file from target computer
SimulinkRealTime.fileSystem.rename Rename a file or folder in the target

computer disk drive
SimulinkRealTime.fileSystem.rmdir Remove empty folder from target computer
SimulinkRealTime.fileSystem.selectdrive Select target computer drive

Examples

List Current Folder Contents on Default Target Computer

Create a file system object for the default target computer and use it to list the contents
of the current folder

fsys = SimulinkRealTime.fileSystem;

dir(fsys)

4/12/1998     20:00             222390        IO  SYS

 11/2/2003    13:54                  6    MSDOS  SYS

 11/5/1998    20:01              93880  COMMAND  COM

 11/2/2003    13:54  <DIR>           0     TEMP     

 11/2/2003    14:00                 33 AUTOEXEC  BAT

  11/2/2003   14:00                512 BOOTSECT  DOS

  18/2/2003   16:33               4512 SC1SIGNA  DAT

 18/2/2003    16:17  <DIR>           0    FOUND  000

 29/3/2003    19:19               8512     DATA  DAT

 28/3/2003    16:41               8512 DATADATA  DAT

 28/3/2003    16:29               4512 SC4INTEG  DAT

  1/4/2003     9:28          201326592 PAGEFILE  SYS

 11/2/2003    14:13  <DIR>           0    WINNT     

    4/5/2001  13:05             214432 NTLDR      '     

6-122



 File System

  4/5/2001    13:05              34468 NTDETECT  COM

 11/2/2003    14:15  <DIR>           0  DRIVERS     

  22/1/2001   11:42                217   BOOT    INI'     

 28/3/2003    16:41               8512        A  DAT

 29/3/2003    19:19               2512 SC3SIGNA  DAT

 11/2/2003    14:25  <DIR>           0  INETPUB     

 11/2/2003    14:28                  0   CONFIG  SYS

 29/3/2003    19:10               2512 SC3INTEG  DAT

  1/4/2003    18:05               2512  SC1GAIN  DAT

   11/2/2003  17:26  <DIR>           0 UTILIT~1     

See Also

Introduced in R2014a

6-123



6 MATLAB API

SimulinkRealTime.fileSystem
Create file system object

Syntax

filesys_object = SimulinkRealTime.fileSystem

filesys_object = SimulinkRealTime.fileSystem(target_object)

Description

filesys_object = SimulinkRealTime.fileSystem constructs and returns the
file system object corresponding to the default target computer. If you have one target
computer or if you designate a target computer as the default target computer in your
system, use this form.

filesys_object = SimulinkRealTime.fileSystem(target_object) constructs
and returns the file system object corresponding to the target computer that is accessible
by target_object.

Examples

Create File System Object for Default Target Computer

Creates a file system object for the default target computer, assumed to be TargetPC1,
and returns the disk space.

fsys = SimulinkRealTime.fileSystem;

diskspace(fsys, 'C:\')

ans = 

     freeDiskSpacebytes: 5.9889e+10

    totalDiskSpacebytes: 6.0005e+10

Create File System Object for Named Target Computer

Creates a file system object for target computer TargetPC1 and returns the disk space.

6-124



 SimulinkRealTime.fileSystem

tg = SimulinkRealTime.target('TargetPC1');

fsys = SimulinkRealTime.fileSystem(tg);

diskspace(fsys, 'C:\')

ans = 

     freeDiskSpacebytes: 5.9889e+10

    totalDiskSpacebytes: 6.0005e+10

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

Output Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

6-125



6 MATLAB API

See Also

See Also
File System | slrt

Introduced in R2014a

6-126



 SimulinkRealTime.fileSystem.cd

SimulinkRealTime.fileSystem.cd
Change folder on target computer

Syntax

cd(filesys_object, folder_name)

Description

cd(filesys_object, folder_name) changes the currently active folder on the target
computer. Prints an error if the destination folder does not exist.

Examples

Change Current Folder

Using the file system object fsys, change the folder from the current one to one named
'logs'.

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

cd(fsys,'logs')

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.

6-127



6 MATLAB API

Example: fsys

Data Types: struct

folder_name — Name of a folder on the target computer
character vector

If you omit the drive letter, the command assumes that the folder path is relative to the
default drive.

A fully qualified folder name can have a maximum of 248 characters, including the drive
letter, colon, and backslash.
Example: logs

Data Types: char

See Also

See Also
File System | SimulinkRealTime.fileSystem.mkdir | slrt

Introduced in R2014a

6-128



 SimulinkRealTime.fileSystem.dir

SimulinkRealTime.fileSystem.dir
List contents of folder on target computer

Syntax

dir(filesys_object)

dir(filesys_object, folder_name)

dir_info = dir(filesys_object, ___ )

Description

dir(filesys_object) lists the contents of the currently active folder on the target
computer.

dir(filesys_object, folder_name) lists the contents of folder folder_name on
the target computer.

dir_info = dir(filesys_object, ___ ) returns the results in a structure array.

Examples

List Contents of Currently Active Folder

List the contents of the currently active folder

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

dir(fsys)

 20/6/2011 15:09  <DIR>           0     FDOS     

16/11/2011 14:10  <DIR>           0 $RECYCLE  BIN

30/10/2015 17:38  <DIR>           0  NWR_TMP     

 18/8/2006  3:58              45341   KERNEL  SYS

 28/8/2006 18:40              66945  COMMAND  COM

 28/3/2013 11:49               1604 AUTOEXEC  BAT

 7/11/2011 16:55                207 FDCONFIG  SYS

  7/8/2007 12:09              14509   CONFIG  TEL

6-129



6 MATLAB API

 25/6/2008 20:18               3066  DEVLOAD  COM

  1/5/2010 14:05              33902   DOSUSB  COM

 26/1/2009  3:07              62279 E100BODI  COM

 21/9/2010 13:00              48123 E1000ODI  COM

  7/8/2007  4:42             165262   FTPBIN  EXE

  3/5/1999 15:50              39748   IPXODI  COM

  8/2/2010 20:35              31919 LISTDEVS  EXE

 30/1/2010  8:34               1394  LPT1USB  SYS

  3/5/1999 15:50              18356      LSL  COM

 27/2/2008  8:16                513      NET  CFG

 13/6/2002 14:45               3310 ODIPKT30  COM

  7/8/2007 10:16                 13 PASSWORD  TEL

 9/12/2005 21:06              16536  RTTBOOT  COM

 27/2/2008  8:18                236   RUNFTP  BAT

 28/8/2008 21:42               1559   SERDRV  SYS

 14/6/2002 18:55              17032  TELPASS  EXE

 13/6/2002 16:20               1514   TERMIN  COM

  6/3/2010 13:00               7165  USBDISK  SYS

 23/1/2010 17:17              36752  USBVIEW  EXE

 27/3/2014 11:49                  0      DOS   SG

  1/8/2012 15:14              16370  XPCBOOT  COM

 27/3/2014 11:49            1140726   XPMTGO  RTB

  6/5/2014 16:28                  0  FREEDOS     

  6/5/2014 16:45            1276571  XPCKRNL  RTB

 13/8/2015 17:04             310451 XPCTRACE  CSV

 17/4/2015 10:53              36503 BOUNCIN1  DLM

30/10/2015 17:04                  0 NEW_DATA  DAT

List Contents of Specific Folder

List the contents of folder 'FDOS'

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

dir(fsys, 'FDOS')

 20/6/2011 15:09  <DIR>           0 PACKAGES     

 20/6/2011 15:09  <DIR>           0  APPINFO     

 20/6/2011 15:09  <DIR>           0      BIN     

 20/6/2011 15:09  <DIR>           0      DOC     

 20/6/2011 15:09  <DIR>           0     HELP     

 20/6/2011 15:09  <DIR>           0      NLS     

 20/6/2011 15:09  <DIR>           0      CPI     

 20/6/2011 15:09  <DIR>           0     TEMP     

 20/6/2011 15:09              14025  INSTALL  LOG

6-130



 SimulinkRealTime.fileSystem.dir

 15/8/2002 23:59              18353  COPYING     

 19/5/2006 18:27              26444  COPYING  LIB

  4/9/2006  1:14               8692 POSTINST  BAT

  1/9/2006 20:23               3389  POSTSET  BAT

 24/1/2004  3:44              11197   CONFIG  SYS

Return Contents of Specific Folder as Structure Array

Return the contents of folder 'FDOS' as a structure array.

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

dir_info = dir(fsys, 'FDOS')

dir_info = 

1x14 struct array with fields:

    date

    time

    isdir

    bytes

    name

List one of the items in the array.

dir_info(1)

ns = 

     date: '20/6/2011'

     time: '15:09'

    isdir: 1

    bytes: 0

     name: {'PACKAGES'  ''}

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

6-131



6 MATLAB API

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

folder_name — Name of a folder on the target computer
character vector

If you omit the drive letter, the command assumes that the folder path is relative to the
default drive.

A fully qualified folder name can have a maximum of 248 characters, including the drive
letter, colon, and backslash.
Example: logs

Data Types: char

Output Arguments
dir_info — Structure array containing information about the file or folder being accessed
struct

The array consists of the following fields:

• date — The last date at which the file or folder was saved.
• time — The last time at which the file or folder was saved.
• isdir — If 1, the item is a folder. If 0, it is not a folder.
• bytes — Size of the filer or folder, in bytes.
• name — Name of an object in the folder, shown as a cell array. The name, stored

in the first element of the cell array, can have up to eight characters. The three-
character file extension is stored in the second element of the cell array.

See Also

See Also
File System | SimulinkRealTime.fileSystem.mkdir | slrt

6-132



 SimulinkRealTime.fileSystem.dir

Introduced in R2014a

6-133



6 MATLAB API

SimulinkRealTime.fileSystem.diskinfo
Target computer drive information

Syntax

disk_info = diskinfo(filesys_object, drive_name)

Description

disk_info = diskinfo(filesys_object, drive_name) returns configuration
information for the specified drive on the target computer.

Examples

Return Configuration Information About Specified Disk

Return configuration information for the target computer C:\ drive.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

disk_info = diskinfo(filesys_object,'C:\')

disk_info = 

  struct with fields:

            DriveLetter: 'C'

                  Label: 'FREEDOS'

               Reserved: '   '

           SerialNumber: -857442364

    FirstPhysicalSector: 63

                FATType: 32

               FATCount: 2

          MaxDirEntries: 0

         BytesPerSector: 512

      SectorsPerCluster: 64

          TotalClusters: 1831212

            BadClusters: 0

6-134



 SimulinkRealTime.fileSystem.diskinfo

           FreeClusters: 1827626

                  Files: 932

             FileChains: 936

             FreeChains: 1

       LargestFreeChain: 1827626

              DriveType: DRIVE_FIXED

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

drive_name — Name of the drive to access
character vector

Enclose the drive name in single quotation marks. The drive must exist in the target
computer.
Example: 'C:\'

Data Types: char

Output Arguments

disk_info — Structure array containing information about target computer disk drive
struct

The disk information includes the drive letter, the internal label of the drive, the drive
type, and the serial number of the disk. It also includes technical information about the
disk that a technician can use to debug problems with the disk hardware.

6-135



6 MATLAB API

See Also

See Also
File System | SimulinkRealTime.fileSystem.diskspace | slrt

Introduced in R2014a

6-136



 SimulinkRealTime.fileSystem.diskspace

SimulinkRealTime.fileSystem.diskspace
Return the free space and total space on the drive, in bytes

Syntax

disk_space = diskspace(filesys_object, drive_name)

Description

disk_space = diskspace(filesys_object, drive_name) returns a structure
containing the free space and total space on the drive, in bytes. If a drive with that name
does not exist in the target computer, displays an error message.

Examples

Display the Disk Space on the C:\ Drive

Return the free space and total space on the C:\ drive in the target computer.

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

diskspace(fsys,'C:\')

ans = 

     freeDiskSpacebytes: 5.9889e+10

    totalDiskSpacebytes: 6.0005e+10

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

6-137



6 MATLAB API

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

drive_name — Name of the drive to access
character vector

Enclose the drive name in single quotation marks. The drive must exist in the target
computer.
Example: 'C:\'

Data Types: char

Output Arguments

disk_space — Contains the free space and total space on the drive
struct

Returns a structure containing the following fields:

• freeDiskSpacebytes — The number of bytes of unused space on the drive.
• totalDiskSpacebytes — The total number of bytes on the drive.

See Also

See Also
File System | SimulinkRealTime.fileSystem.diskinfo | slrt

Introduced in R2016a

6-138



 SimulinkRealTime.fileSystem.fclose

SimulinkRealTime.fileSystem.fclose

Close target computer file

Syntax

status = fclose(filesys_object,file_id)

Description

status = fclose(filesys_object,file_id) closes an open file in the target
computer file system. file_id is the file identifier associated with an open file.

You can have at most eight files open on the target computer at the same time.

fclose does not close standard input, standard output, or standard error.

Examples

Open a File for Writing and Close It

Open file data.dat, write to it, and close it again.

Open and write file.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

file_id = fopen(filesys_object, 'data.dat', 'w');

fwrite(filesys_object, file_id, 'test')

Close file.

fclose(filesys_object, file_id)

ans =

6-139



6 MATLAB API

     0

Open a File for Reading and Close It

Open file data.dat, read from it, and close it again.

Open and read file.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

file_id = fopen(filesys_object, 'data.dat', 'r');

value = fread(filesys_object, file_id);

char(value)

ans =

  1×4 char array

test

Close file.

fclose(filesys_object, file_id)

ans =

     0

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

6-140



 SimulinkRealTime.fileSystem.fclose

file_id — Identifier representing a file on the target computer
integer

Pass this value to functions that access files on the target computer.
Example: h

Output Arguments

status — Indication of whether the file closed properly
0 | -1

If the file closed properly, the value is 0, otherwise it is -1.

See Also

See Also
File System | SimulinkRealTime.fileSystem.fopen

Introduced in R2014a

6-141



6 MATLAB API

SimulinkRealTime.fileSystem.fileinfo
Target computer file information

Syntax
file_info = fileinfo(filesys_object, file_id)

Description
file_info = fileinfo(filesys_object, file_id) gets file configuration
information for the file on the target computer associated with file_id.

Examples
Get File Information for a File

Open file data.dat and read its file information.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

file_id = fopen(filesys_object, 'data.dat', 'r');

fileinfo(filesys_object, file_id)

ans = 

  struct with fields:

               FilePos: 0

         AllocatedSize: 32768

         ClusterChains: 1

    VolumeSerialNumber: -857442364

               FulName: 'C:\data.dat'

Input Arguments
filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

6-142



 SimulinkRealTime.fileSystem.fileinfo

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

file_id — Identifier representing a file on the target computer
integer

Pass this value to functions that access files on the target computer.
Example: h

Output Arguments

file_info — File configuration information
struct

The file information includes the full file name, the amount of space allocated for the file,
and technical information for use by a maintenance technician.

See Also

See Also
File System | SimulinkRealTime.fileSystem.fopen | slrt

Introduced in R2014a

6-143



6 MATLAB API

SimulinkRealTime.fileSystem.filetable
Information about open files in target computer file system

Syntax

open_file_table = filetable(filesys_object)

Description

open_file_table = filetable(filesys_object) returns a table of the open files
in the target computer file system.

You can have at most eight files open on the target computer at the same time.

Note: Use the filetable function only to recover the lost file handle value when
MATLAB exits with files still open on the target computer. The function has no other
use.

Examples

Get the Handle for an Open File

Open a file, get the table containing its file handle, and close it.

Open a file.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

file_id = fopen(filesys_object, 'data.dat', 'r');

Get the file handle of the file.

filetable(filesys_object)

ans =

6-144



 SimulinkRealTime.fileSystem.filetable

  1×186 char array

Index    Handle  Flags     FilePos  Name

------------------------------------------

    0  03DF0000  R__             0  C:\data.dat

Close the file.

fclose(filesys_object, hex2dec('03DF0000'))

ans =

     0

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

Output Arguments

open_file_table — Get list of open files and file handles
struct

The file table includes the full file name, the file handle in hexadecimal, and technical
information for use by a maintenance technician.

6-145



6 MATLAB API

See Also

See Also
File System | hex2dec | slrt

Introduced in R2014a

6-146



 SimulinkRealTime.fileSystem.fopen

SimulinkRealTime.fileSystem.fopen
Open target computer file for reading and writing

Syntax

file_id = fopen(filesys_object, file_name)

file_id = fopen(filesys_object, file_name, permission)

Description

file_id = fopen(filesys_object, file_name) opens the specified file name on
the target computer for reading binary data.

There are the following limitations:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

file_id = fopen(filesys_object, file_name, permission) opens the
specified file name on the target computer for reading binary data.

Examples

Open a File with Default Permissions

Open file data.dat with default permissions, read from it, and close it again.

6-147



6 MATLAB API

Open and read file.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

file_id = fopen(filesys_object, 'data.dat');

value = fread(filesys_object, file_id);

char(value)

ans =

  1×4 char array

test

Close file.

fclose(filesys_object, file_id)

ans =

     0

Open a File for Writing

Open file data.dat, write to it, and close it again.

Open and write file.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

file_id = fopen(filesys_object, 'data.dat', 'w');

fwrite(filesys_object, file_id, 'test')

Close file.

fclose(filesys_object, file_id)

ans =

     0

Open a File for Reading

Open file data.dat, read from it, and close it again.

Open and read file.

6-148



 SimulinkRealTime.fileSystem.fopen

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

file_id = fopen(filesys_object, 'data.dat', 'r');

value = fread(filesys_object, file_id);

char(value)

ans =

  1×4 char array

test

Close file.

fclose(filesys_object, file_id)

ans =

     0

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

file_name — Name of the file that is being opened
character vector

The name of the file can be a name relative to the current folder or a fully qualified path.
Enclose the file name in single quotation marks.
Example: 'data.dat'

6-149



6 MATLAB API

permission — File access permissions under which the file is being opened
'r' (default) | 'w' | 'a' | 'r+' | 'w+' | 'a+'

The permission values have the following meaning:

• 'r' — Open the file for reading (default). If the file does not exist, the method does
not do anything.

• 'w' — Open the file for writing. If the file does not exist, the method creates the file.
• 'a' — Open the file for appending to it. Initially, the file pointer is at the end of the

file. If the file does not exist, the method creates the file.
• 'r+' — Open the file for reading and writing. Initially, the file pointer is at the

beginning of the file. If the file does not exist, the method does not do anything.
• 'w+' — Open the file for reading and writing. If the file exists, the method empties

the file and places the file pointer at the beginning of the file. If the file does not exist,
the method creates the file.

• 'a+' — Open the file for reading and appending to the file. Initially, the file pointer is
at the end of the file. If the file does not exist, the method creates the file.

Example: 'w'

Output Arguments

file_id — Identifier representing a file on the target computer
integer

Pass this value to functions that access files on the target computer.
Example: h

See Also

See Also
File System | SimulinkRealTime.fileSystem.fclose | slrt

Introduced in R2014a

6-150



 SimulinkRealTime.fileSystem.fread

SimulinkRealTime.fileSystem.fread
Read open target computer file

Syntax

data = fread(filesys_object, file_id)

data = fread(filesys_object, file_id, offset, numbytes)

Description

data = fread(filesys_object, file_id) reads binary data from the file on
the target computer and writes it into matrix data. The file_id argument is the file
identifier associated with an open file.

data = fread(filesys_object, file_id, offset, numbytes) reads numbytes
bytes from file_id starting from position offset and writes the block into matrix
data.

Examples

Open File for Reading

Open file data.dat, read from it, and close it again.

Open and read file.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

file_id = fopen(filesys_object, 'data.dat', 'r');

value = fread(filesys_object, file_id);

char(value)

ans =

  1×4 char array

6-151



6 MATLAB API

test

Close file.

fclose(filesys_object, file_id)

ans =

     0

Open File for Reading N Bytes from Offset

Open file data.dat at offset 1, read 3 bytes from it, and close it again.

Open and read file.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

file_id = fopen(filesys_object, 'data.dat', 'r');

value = fread(filesys_object, file_id, 1, 3);

char(value)

ans =

  1×4 char array

est

Close file.

fclose(filesys_object, file_id)

ans =

     0

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

6-152



 SimulinkRealTime.fileSystem.fread

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

file_id — Identifier representing a file on the target computer
integer

Pass this value to functions that access files on the target computer.
Example: h

numbytes — Maximum number of bytes that fread can read
all (default) | integer

Example:

offset — Position from the beginning of file that fread starts to read
0 (default) | integer

Example:

Output Arguments

data — Matrix containing the binary data that was read
matrix

To get a count of the total number of bytes read into data, call the length function.
If numbytes bytes are not available, length(data) can be less than numbytes.
length(data) is zero if fread is positioned at the end of the file.

See Also

See Also
File System | SimulinkRealTime.fileSystem.fwrite | slrt

6-153



6 MATLAB API

Introduced in R2014a

6-154



 SimulinkRealTime.fileSystem.fwrite

SimulinkRealTime.fileSystem.fwrite
Write binary data to open target computer file

Syntax

fwrite(filesys_object, file_id, data)

Description

fwrite(filesys_object, file_id, data)  writes the elements of matrix data to
the file identified by file_id. The file_id argument is the file identifier associated
with an open file. fwrite requires that the file is open with write permission.

Examples

Write a Magic Number Matrix to a File

Open magic.dat for writing, write it, close it, and read it back.

Open magic.dat for writing.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

file_id = fopen(filesys_object, 'magic.dat', 'w');

Create and write a magic square.

msquare = magic(5)

fwrite(filesys_object, file_id, msquare);

msquare =

    17    24     1     8    15

    23     5     7    14    16

     4     6    13    20    22

    10    12    19    21     3

    11    18    25     2     9

6-155



6 MATLAB API

Close the file.

fclose(filesys_object, file_id)

ans =

     0

Reopen the file for reading and read it.

file_id = fopen(filesys_object, 'magic.dat', 'r');

value = fread(filesys_object, file_id)

value =

  1×25 uint8 row vector

  Columns 1 through 10

   17   23    4   10   11   24    5    6   12   18

  Columns 11 through 20

    1    7   13   19   25    8   14   20   21    2

  Columns 21 through 25

   15   16   22    3    9

Close the file.

fclose(filesys_object, file_id)

ans =

     0

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

6-156



 SimulinkRealTime.fileSystem.fwrite

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

file_id — Identifier representing a file on the target computer
integer

Pass this value to functions that access files on the target computer.
Example: h

data — Matrix containing the binary data that is written
matrix

The data is written to the file in column order.
Example: 'test'

See Also

See Also
File System | SimulinkRealTime.fileSystem.fread | slrt

Introduced in R2014a

6-157



6 MATLAB API

SimulinkRealTime.fileSystem.getfilesize

Size of file on target computer

Syntax

file_size = getfilesize(filesys_object, file_id)

Description

file_size = getfilesize(filesys_object, file_id) returns the size (in bytes)
of the file identified by the file_id file identifier on the target computer file system.

Examples

Read the Size of a File

Open file data.dat, read its file size, and close it again.

Get the file system and open the file

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

file_id = fopen(filesys_object, 'data.dat');

Read the file size.

file_size = getfilesize(filesys_object,file_id)

file_size =

        4512

Close the file.

6-158



 SimulinkRealTime.fileSystem.getfilesize

fclose(filesys_object, file_id);

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

file_id — Identifier representing a file on the target computer
integer

Pass this value to functions that access files on the target computer.
Example: h

Output Arguments

file_size — Number of bytes in the file
integer

This value is the value printed by the dir command.

See Also

See Also
File System | SimulinkRealTime.fileSystem.fopen | slrt

Introduced in R2014a

6-159



6 MATLAB API

SimulinkRealTime.fileSystem.mkdir
Create folder on target computer

Syntax

mkdir(filesys_object,folder_name)

Description

mkdir(filesys_object,folder_name) makes a new folder in the current folder on
the target computer file system.

Examples

Create a Folder

Create a folder logs in the target computer file system.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

mkdir(filesys_object,'logs')

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

6-160



 SimulinkRealTime.fileSystem.mkdir

Data Types: struct

folder_name — Name of a folder on the target computer
character vector

If you omit the drive letter, the command assumes that the folder path is relative to the
default drive.

A fully qualified folder name can have a maximum of 248 characters, including the drive
letter, colon, and backslash.
Example: logs

Data Types: char

See Also

See Also
File System | SimulinkRealTime.fileSystem.rmdir | slrt

Introduced in R2014a

6-161



6 MATLAB API

SimulinkRealTime.fileSystem.pwd
Path to currently active folder on target computer

Syntax

active_folder = pwd(filesys_object)

Description

active_folder = pwd(filesys_object) returns the path to the currently active
folder on the target computer. Unless cd(filesys_object, folder_name) has been
called, the currently active folder is the top folder of the boot drive, usually C:\.

Examples

Return Current Folder

Return the currently active folder for the target computer file system.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

pwd(filesys_object)

ans =

  1×3 char array

C:\

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

6-162



 SimulinkRealTime.fileSystem.pwd

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.
Example: fsys

Data Types: struct

Output Arguments

active_folder — Currently active folder on the target computer
character vector

The path to the currently active folder on the target computer.

See Also

See Also
File System | SimulinkRealTime.fileSystem.cd | slrt

Introduced in R2014a

6-163



6 MATLAB API

SimulinkRealTime.fileSystem.removefile
Remove file from target computer

Syntax

removefile(filesys_object,file_name)

Description

removefile(filesys_object,file_name) removes a file from the target computer
file system.

You cannot recover this file once you remove it.

Examples

Remove a File from the Target Computer

Remove data2.dat from the file system.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

removefile(filesys_object,'data2.dat')

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.

6-164



 SimulinkRealTime.fileSystem.removefile

Example: fsys

Data Types: struct

file_name — Name of the file that is being removed
character vector

The name of the file can be a name relative to the current folder or a fully qualified path.
Enclose the file name in single quotation marks.
Example: 'data.dat'

See Also

See Also
File System | SimulinkRealTime.fileSystem.fopen | slrt

Introduced in R2014a

6-165



6 MATLAB API

SimulinkRealTime.fileSystem.rename
Rename a file or folder in the target computer disk drive

Syntax

rename(filesys_object,'old_name', 'new_name')

Description

rename(filesys_object,'old_name', 'new_name') renames a file or folder in the
target computer disk drive. If the file is open or does not exist, the function displays an
error message.

Examples

Rename a File in the Current Folder

Renames the file old_data.dat to new_data.dat in the current folder.

tg=slrt;

fsys=SimulinkRealTime.fileSystem(tg);

dir(fsys);

30/10/2015 17:29                  0 OLD_DATA  DAT

If old_data.dat is open, close it with SimulinkRealTime.fileSystem.fclose.

rename(fsys, 'old_data.dat','new_data.dat');

dir(fsys);

30/10/2015 17:29                  0 NEW_DATA  DAT

Rename a File in a Folder

Renames the file C:\old_temp\old_data.dat to C:\old_temp\new_data.dat.

tg=slrt;

fsys=SimulinkRealTime.fileSystem(tg);

6-166



 SimulinkRealTime.fileSystem.rename

dir(fsys,'C:\old_temp');

30/10/2015 17:29                  0 OLD_DATA  DAT

If old_data.dat is open, close it with SimulinkRealTime.fileSystem.fclose.

rename(fsys, 'C:\old_temp\old_data.dat', ...

     'C:\old_temp\new_data.dat');

dir(fsys,'C:\old_temp');

30/10/2015 17:29                  0 NEW_DATA  DAT

Move a File from One Folder to Another

Moves the file C:\old_temp\new_data.dat to C:\new_temp\new_data.dat by
renaming the folder part of the path.

tg=slrt;

fsys=SimulinkRealTime.fileSystem(tg);

dir(fsys,'C:\old_temp');

30/10/2015 17:29                  0 NEW_DATA  DAT

If new_data.dat is open, close it with SimulinkRealTime.fileSystem.fclose. If C:
\new_temp does not exist, create it by using SimulinkRealTime.fileSystem.mkdir.

rename(fsys, 'C:\old_temp\new_data.dat', ...

     'C:\new_temp\new_data.dat');

dir(fsys,'C:\new_temp');

30/10/2015 17:29                  0 NEW_DATA  DAT

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.

6-167



6 MATLAB API

Example: fsys

Data Types: struct

old_name — Old name of file or folder
character vector

The old name of the file or folder can be a name relative to the current folder or a fully
qualified path. Enclose the name in single quotation marks.
Example: 'old_data.dat', 'C:\old_temp\old_data.dat'

Data Types: char

new_name — New name of file or folder
character vector

The new name of the file or folder can be a name relative to the current folder or a fully
qualified path. Enclose the name in single quotation marks. If you are moving a file to a
different folder, the folder must exist.
Example: 'new_data.dat', 'C:\new_temp\new_data.dat'

Data Types: char

See Also

See Also
File System | slrt

Introduced in R2016a

6-168



 SimulinkRealTime.fileSystem.rmdir

SimulinkRealTime.fileSystem.rmdir
Remove empty folder from target computer

Syntax

rmdir(filesys_object,folder_name)

Description

rmdir(filesys_object,folder_name) removes an empty folder from the target
computer file system. If the folder contains a file or folder, the function prints an error
message.

You cannot recover this folder once you remove it.

Examples

Remove a Folder

Remove the folder data2.dat from the target computer file system.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

rmdir(filesys_object,'data2.dat')

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.

6-169



6 MATLAB API

Example: fsys

Data Types: struct

folder_name — Name of a folder on the target computer
character vector

If you omit the drive letter, the command assumes that the folder path is relative to the
default drive.

A fully qualified folder name can have a maximum of 248 characters, including the drive
letter, colon, and backslash.
Example: logs

Data Types: char

See Also

See Also
File System | SimulinkRealTime.fileSystem.mkdir | slrt

Introduced in R2014a

6-170



 SimulinkRealTime.fileSystem.selectdrive

SimulinkRealTime.fileSystem.selectdrive
Select target computer drive

Syntax

selectdrive(filesys_object,drive_name)

Description

selectdrive(filesys_object,drive_name) sets the currently active drive of the
target computer to the specified character vector. If a drive with that name does not exist
in the target computer, the function displays an error message.

Examples

Select the C:\ Drive

Select the C:\ drive in the target computer.

tg = slrt;

filesys_object = SimulinkRealTime.fileSystem(tg);

selectdrive(filesys_object,'C:\')

Input Arguments

filesys_object — Object representing the target computer file system
SimulinkRealTime.fileSystem object

File system object created by using the SimulinkRealTime.fileSystem creation
function.

The file system object represents the target computer file system. You work with
the target computer file system from the development computer by using file system
methods.

6-171



6 MATLAB API

Example: fsys

Data Types: struct

drive_name — Name of the drive to access
character vector

Enclose the drive name in single quotation marks. The drive must exist in the target
computer.
Example: 'C:\'

Data Types: char

See Also

See Also
File System | slrt

Introduced in R2016a

6-172



 Real-Time Application

Real-Time Application
Represent real-time application and target computer status

Description
Object represents currently loaded real-time application and target computer status.

Object provides access to methods and properties that do the following:

• Start and stop the real-time application.
• Read and set parameters.
• Monitor signals.
• Retrieve status information about the target computer.
• Restart the target computer.
• Load and unload the real-time application.

Function names are case-sensitive. Type the entire name. Property names are not case-
sensitive. You do not need to type the entire name, as long as the characters you do type
are unique for the property.

Some of the object properties and functions can be invoked from the target computer
command line when the real-time application has been loaded.

Create Object
SimulinkRealTime.target

Properties
Real-Time Application Properties Properties of real-time application and

target computer

Object Functions
SimulinkRealTime.target.ping Test communication between development

and target computers

6-173



6 MATLAB API

SimulinkRealTime.target.reboot Restart target computer
SimulinkRealTime.target.load Download real-time application to target

computer
SimulinkRealTime.target.unload Remove real-time application from target

computer
SimulinkRealTime.target.close Close connection between development and

target computers
SimulinkRealTime.target.start Start execution of real-time application on

target computer
SimulinkRealTime.target.stop Stop execution of real-time application on

target computer
SimulinkRealTime.target.addscope Create a scope of specified type
SimulinkRealTime.target.getscope Return scope identified by scope number
SimulinkRealTime.target.remscope Remove scope from target computer
SimulinkRealTime.target.getlog Portion of output logs from target object
SimulinkRealTime.target.getsignal Value of signal
SimulinkRealTime.target.getsignalid Signal index from signal hierarchical name
SimulinkRealTime.-
target.getsignalidsfromlabel

Vector of signal indices

SimulinkRealTime.target.getsignallabel Signal label for signal index
SimulinkRealTime.target.getsignalname Signal name from index list
SimulinkRealTime.target.getparam Read value of observable parameter in real-

time application
SimulinkRealTime.target.setparam Change value of tunable parameter in real-

time application
SimulinkRealTime.target.getparamid Parameter index from parameter

hierarchical name
SimulinkRealTime.target.getparamname Block path and parameter name from

parameter index
SimulinkRealTime.target.loadparamset Restore parameter values saved in specified

file
SimulinkRealTime.target.saveparamset Save real-time application parameter values

Examples

Build and Run Real-Time Application

Build and download xpcosc, execute real-time application in external mode.

6-174



 Real-Time Application

Open, build, and download real-time application

ex_model = 'xpcosc';

open_system(ex_model);

ex_scope = [ex_model '/Scope'];

open_system(ex_scope)

rtwbuild(ex_model);

tg = SimulinkRealTime.target

Target: TargetPC1

   Connected            = Yes

   Application          = xpcosc

   Mode                 = Real-Time Single-Tasking

   Status               = stopped

   CPUOverload          = none

   ExecTime             = 0.0000

   SessionTime          = 794.4953

   StopTime             = 0.200000

   SampleTime           = 0.000250

   AvgTET               = NaN

   MinTET               = Inf

   MaxTET               = 0.000000

   ViewMode             = 0

   TimeLog              = Vector(0) 

   StateLog             = Matrix (0 x 2)

   OutputLog            = Matrix (0 x 2)

   TETLog               = Vector(0) 

   MaxLogSamples        = 16666

   NumLogWraps          = 0

   LogMode              = Normal

   Scopes               = No Scopes defined  

   NumSignals           = 7

   ShowSignals          = off

   NumParameters        = 7

   ShowParameters       = off

Prepare and run simulation in external mode for 10 seconds.

tg.StopTime = 10;

set_param(ex_model,'SimulationMode','External'); 

set_param(ex_model,'SimulationCommand','Connect');

6-175



6 MATLAB API

set_param(ex_model,'SimulationCommand','Start');

pause(10);

set_param(ex_model,'SimulationCommand','Stop');

set_param(ex_model,'SimulationCommand','Disconnect'); 

The output looks like this figure.

Unload real-time application

unload(tg)

Target: TargetPC1

   Connected            = Yes

6-176



 Real-Time Application

   Application          = loader

See Also

See Also
“Target Computer Commands”

Topics
“Blocks Whose Outputs Depend on Inherited Sample Time” (Simulink)

Introduced in R2014a

6-177



6 MATLAB API

Real-Time Application Properties

Properties of real-time application and target computer

Description

Provides access to the properties of the real-time application and the target computer.

To get the value of a readable target object property from a target object:

value = target_object.property_name

For example, to get the CommunicationTimeOut of the target object:

target_object = slrt;

value = target_object.CommunicationTimeOut

To set the value of a writable target object property from a target object:

target_object.property_name = new_value

For example, to set the CommunicationTimeOut of the target object:

target_object = slrt;

target_object.CommunicationTimeOut = 10

At the target computer command line, you can set the target object properties stoptime,
sampletime, and writable parameters.

stoptime = floating_point_number

sampletime = floating_point_number

setpar parameter_index = parameter_value

Target Computer

Application — Name of real-time application
'loader' | character vector

This property is read-only.

6-178



 Real-Time Application Properties

Name of real-time application running on target computer, specified as a character
vector. This name is the name of the Simulink model from which the application was
built. When the target computer starts, this value is 'loader'.

CommunicationTimeOut — Communication timeout between development and target
computers
5 (default) | seconds

Communication timeout between the development and target computers, specified in
seconds.

Connected — Communication status between development and target computers
'No' (default) | 'Yes'

This property is read-only.

Communication status between the development and target computers, specified as
character vector.

CPUoverload — CPU status for overload
'none' (default) | 'detected'

This property is read-only.

CPU status for overload, specified as a character vector. If the real-time application
requires more CPU time than the model sample time provides, the kernel changes this
value from 'none' to 'detected'. It then stops the current run. To keep this status
from changing to 'detected', you must user a faster processor or specify a larger
sample time.

Mode — Execution mode of the real-time application
'Real-Time Singletasking' (default) | 'Real-Time Multitasking'

This property is read-only.

Execution mode of the real-time application on the target computer, specified as a
character vector. Parameter settings determine the execution mode during Simulink
Coder code generation.

SessionTime — Time since kernel started running on target computer
seconds

6-179



6 MATLAB API

This property is read-only.

Time since the kernel started running on the target computer, specified in seconds. This
time is also the elapsed time since you started the target computer.

Real-Time Execution

AvgTET — Average task execution time
seconds

This property is read-only.

Average task execution time, specified in seconds.

Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step. For a multirate model, use the profiler to find out what the execution time is
for each rate.

Task execution time is nearly constant, with minor deviations due to cache, memory
access, interrupt latency, and multirate model execution.

The TET includes:

• Complete I/O latency.
• Data logging for output, state, and TET, and the data captured in scopes.
• Time spent executing tasks related to asynchronous interrupts while the real-time

task is running.
• Parameter updating latency. This latency is incurred if the Double buffer

parameter changes parameter is set in the Simulink Real-Time Options node of
the model Configuration Parameters dialog box.

The TET is not the only consideration in determining the minimum achievable sample
time. Other considerations are:

• Time required to measure TET.
• Interrupt latency required to schedule and run one step of the model.

ExecTime — Execution time of real-time application
seconds

6-180



 Real-Time Application Properties

This property is read-only.

Execution time of real-time application since your real-time application started running,
specified in seconds. When the real-time application stops, the kernel displays the total
execution time.

MaxTET — Maximum task execution time
seconds

This property is read-only.

Maximum task execution time, specified in seconds. Corresponds to the slowest time
(longest measured time) required to update model equations and post outputs.

MinTET — Minimum task execution time
seconds

This property is read-only.

Minimum task execution time, specified in seconds. Corresponds to the fastest time
(smallest measured time) required to update model equations and post outputs.

SampleTime — Time between samples (step size)
seconds

Time between samples (step size), in seconds, for updating the model equations and
posting the outputs.

Note: Some blocks produce incorrect results when you change their sample time at run
time. If you include such blocks in your model, the software displays a warning message
during model build. To avoid incorrect results, change the sample time in the original
model, and then rebuild and download the model.

See “Limits on Sample Time”.

Status — Execution status of real-time application
'stopped' (default) | 'running'

This property is read-only.

Execution status of real-time application, specified as character vector.

6-181



6 MATLAB API

StopTime — Time when real-time application stops running
seconds | 'Inf'

Time when the real-time application stops running, specified in seconds or as character
vector. The initial value is set in the Solver pane of the Configuration Parameters dialog
box.

When the ExecTime reaches StopTime, the application stops running. If you specify the
special value 'Inf', the real-time application runs until you manually stop it or restart
the target computer.

TETLog — Storage in the MATLAB workspace for task execution time
vector of double

This property is read-only.

Storage in the MATLAB workspace for task execution time, specified as a vector of
double.

Signal Visualization

LogMode — Controls which data points are logged
'Normal' (default) | double

The values are the following meaning:

• 'Normal' — Indicates time-equidistant logging. Logs a data point at every time
interval.

• Double — Indicates value-equidistant logging. Logs a data point only when an
output signal from the OutputLog changes by the specified difference in signal value
(increment).

MaxLogSamples — Maximum number of samples for each logged signal
unsigned integer

This property is read-only.

Maximum number of samples for each logged signal, specified as an unsigned integer.

NumLogWraps — Number of times the circular data logging buffer wraps
unsigned integer

6-182



 Real-Time Application Properties

This property is read-only.

Number of times the circular data logging buffer wraps, specified as an unsigned integer.
The buffer wraps each time the number of samples exceeds MaxLogSamples.

NumSignals — Number of observable signals
unsigned integer

This property is read-only.

Number of observable signals in Simulink model, specified as an unsigned integer.
Nonobservable signals are not included in this value.

Note:

• Signal access by signal index will be removed in a future release. Access signals by
signal name instead.

• This parameter will be removed in a future release.

OutputLog — Storage in MATLAB workspace for output or Y-vector
matrix

This property is read-only.

Storage in MATLAB workspace for output or Y-vector, specified as a matrix.

Scopes — List of index numbers, one per scope
vector of unsigned integer

This property is read-only.

List of index numbers, one per scope, specified as a vector of unsigned integers.

ShowSignals — Flag set to display the list of signals
'off' (default) | 'on'

Flag set to view the list of signals from your Simulink model, specified as character
vector. MATLAB displays the signal list when you display the properties for a target
object.

6-183



6 MATLAB API

Signals — List of observable signals
vector of structures

This property is read-only.

List of observable signals, specified as a vector containing the following values for each
signal:

• Index — ID used to access the signal.
• Value — Value of the signal.
• Type — Data type of the signal.
• Block name— Hierarchical name of the Simulink block that the signal comes from.
• Label — Label that you have assigned to this signal.

This list is visible only when ShowSignals is set to 'on'.

StateLog — Storage in MATLAB workspace for state or X-vector
matrix

This property is read-only.

Storage in MATLAB workspace for state or X-vector, specified as a matrix.

TimeLog — Storage in the MATLAB workspace for time or T-vector
vector of double

This property is read-only.

Storage in the MATLAB workspace for time or T-vector, specified as a vector of double.

Parameter Tuning

NumParameters — Number of tunable parameters
unsigned integer

This property is read-only.

Number of tunable parameters in Simulink model, specified as an unsigned integer.
Nontunable (nonobservable) parameters are not included in this value.

6-184



 Real-Time Application Properties

Note:

• Parameter access by parameter index will be removed in a future release. Access
parameters by parameter name instead.

• This parameter will be removed in a future release.

Parameters — List of tunable parameters
vector of structures

This property is read-only.

List of tunable parameters, specified as a vector containing the following values for each
parameter:

• Value — Value of the parameter in a Simulink block. If the parameter is a structure,
the value is displayed with vector brackets.

• Type — Data type of the parameter.

Note: Simulink Real-Time does not support parameters of multiword data types.
• Size — Size of the parameter. For example, scalar, 1-by-2 vector, or 2-by-3 matrix,

structure.
• Parameter name — Name of the parameter in a Simulink block.

If the parameter is a field of a structure, the name is displayed in the form
structname.fieldname.

• Block name — If the parameter is a block parameter, the block name is the
hierarchical name of the Simulink block containing the parameter. If the parameter is
a MATLAB variable that provides the value for a block parameter, the block name is
the empty character vector.

This list is visible only when ShowParameters is set to 'on'.

ShowParameters — Flag set to display the list of parameters
'off' (default) | 'on'

Flag set to view the list of parameters from your Simulink model, specified as character
vector. MATLAB displays the parameter list when you display the properties for a target
object.

6-185



6 MATLAB API

See Also

See Also
“Target Computer Commands” | Real-Time Application
| SimulinkRealTime.target.getsignalid |
SimulinkRealTime.utils.minimumSampleTime

Topics
“Nonobservable Signals”
“Nonobservable Parameters”
“Limits on Sample Time”

Introduced in R2014a

6-186



 SimulinkRealTime.target

SimulinkRealTime.target
Interface for managing target computer

Syntax

target_object = SimulinkRealTime.target

target_object = SimulinkRealTime.target(target_name)

Description

target_object = SimulinkRealTime.target constructs a target object
representing the default target computer.

When MATLAB evaluates the return value on the development computer, it attempts to
connect to the target computer. If the attempt succeeds, MATLAB prints Connected =
Yes, followed by the status of the real-time application running on the target computer.
If the attempt fails, MATLAB waits until the connection times out, and then prints
Connected = No. To avoid the timeout delay, check that the target computer is
operational and connected to the development computer, or suppress output with a
terminating semicolon.

target_object = SimulinkRealTime.target(target_name) constructs a target
object representing the target computer designated by target_name.

Examples

Default Target Computer

Create a target object that communicates with the default target computer. Report the
status of the default target computer. In this case, the target computer is connected to
the development computer and is executing the loader.

target_object = SimulinkRealTime.target

Target: TargetPC1

   Connected            = Yes

6-187



6 MATLAB API

   Application          = loader

Specific Target Computer

Create a target object that communicates with target computer TargetPC1. Report the
status of the target computer. In this case, the target computer is not connected to the
development computer.

target_object = SimulinkRealTime.target('TargetPC1')

Target: TargetPC1

   Connected            = No

Input Arguments

target_name — Name assigned to target computer
character vector
Example: 'TargetPC1'

Data Types: char

Output Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

See Also

See Also
Real-Time Application | Real-Time Application Properties | slrt | Target Settings
Properties

6-188



 SimulinkRealTime.target

Introduced in R2014a

6-189



6 MATLAB API

SimulinkRealTime.target.addscope

Create a scope of specified type

Syntax

scope_object = addscope(target_object)

scope_object = addscope(target_object, scope_type, scope_number)

scope_object_vector = addscope(target_object, scope_type, 

scope_number_vector)

Description

scope_object = addscope(target_object) creates on the target computer a host
scope and assigns as its scope number the next available integer in the target object
property Scopes. It returns the object representing this scope.

scope_object = addscope(target_object, scope_type, scope_number)

creates on the target computer a scope of the given type with the given scope number. It
returns the object representing this scope.

scope_object_vector = addscope(target_object, scope_type, 

scope_number_vector) creates on the target computer a set of scopes of the given type
with the given scope numbers. It returns a vector of objects representing these scopes.

addscope updates the target object property Scopes. If the result is not assigned to a
MATLAB variable, the scope object properties are listed in the Command Window.

The Simulink Real-Time product supports nine target scopes, eight file scopes, and as
many host scopes as the target computer resources can support. If you try to add a scope
with the same index as an existing scope, the result is an error.

6-190



 SimulinkRealTime.target.addscope

At the target computer command line, you can add a single target scope:

addscope

addscope scope_number

Examples

Create Default Scope with Default Number

Create a default (host) scope with the default (next available) number and assign it to
sc1

tg = slrt;

sc1 = addscope(tg)

sc1 = 

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 1

   Status               = Interrupted

   Type                 = Host

   NumSamples           = 250

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

6-191



6 MATLAB API

   TriggerSignal        = -1 

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 1

   TriggerSample        = 0

   StartTime            = -1.000000

   Data                 = Matrix (250 x 0)

   Time                 = Matrix (250 x 1)

   Signals              = no Signals defined

Create File Scope Number 2

Create a file scope with number 2 and assign it to sc2.

tg = slrt;

sc2 = addscope(tg,'file',2)

sc2 = 

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 2

   Status               = Interrupted

   Type                 = File

   NumSamples           = 250

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = -1 

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 2

   TriggerSample        = 0

   FileName             = unset

   WriteMode            = Lazy

   WriteSize            = 512

   AutoRestart          = off

   DynamicFileName      = off

   MaxWriteFileSize     = 536870912

   Signals              = no Signals defined

Create Vector of Target Scopes

Create two target scopes 3 and 4 using a vector of scope numbers and assign the scope
objects to variable scvector.

6-192



 SimulinkRealTime.target.addscope

tg = slrt;

scope_object_vector = addscope(tg, 'target', [3, 4])

scope_object_vector = 

Simulink Real-Time Scope

   Application          = xpco   ScopeId              = 3

   Status               = Interrupted

   Type                 = Target

   NumSamples           = 250

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = -1 

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 3

   TriggerSample        = 0

   DisplayMode          = Redraw (Graphical)

   YLimit               = Auto

   Grid                 = on

   Signals              = no Signals defined

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 4

   Status               = Interrupted

   Type                 = Target

   NumSamples           = 250

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = -1 

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 4

   TriggerSample        = 0

   DisplayMode          = Redraw (Graphical)

   YLimit               = Auto

   Grid                 = on

6-193



6 MATLAB API

   Signals              = no Signals defined

Input Arguments
target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

scope_type — Type of scope to create
'host' (default) | 'target' | 'file'

Type of scope to create, as a character vector. This argument is optional. The default
value is 'host'.

scope_number — New scope number
unsigned integer

New scope number. This argument is optional. The default value is the next available
integer in the target object property Scopes.

If you enter the scope number for an existing scope object, the result is an error.
Example: 1

scope_number_vector — Vector of new scope numbers
unsigned integer vector

Vector of new scope numbers. If you enter the scope number for an existing scope object,
the result is an error.
Example: [2, 3]

Output Arguments
scope_object — Object representing newly created scope
object

6-194



 SimulinkRealTime.target.addscope

Object representing the newly created scope

scope_object_vector — Vector of objects representing newly created scope
object

Vector containing objects representing the newly created scope

See Also

See Also
“Target Computer Commands” | Real-Time Application | Real-Time
Application Properties | SimulinkRealTime.target.getscope |
SimulinkRealTime.target.remscope

Introduced in R2014a

6-195



6 MATLAB API

SimulinkRealTime.target.close

Close connection between development and target computers

Syntax

status_char_vector = close(target_object)

Description

status_char_vector = close(target_object) closes the connection between the
development computer and a target computer. The target object and other associated
objects are still valid, and will automatically connect to the target computer the next time
they are accessed.

Examples

Close Communication with Target Computer 'TargetPC1'

Access target computer 'TargetPC1' and close the connection.

Get a target object for target computer 'TargetPC1'

tg = SimulinkRealTime.target('TargetPC1')

Target: TargetPC1

   Connected            = Yes

   Application          = loader

Close the connection

close(tg)

ans =

6-196



 SimulinkRealTime.target.close

Communication is closed

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

Output Arguments

status_char_vector — Report results of attempt to close communication
'Communication is closed'

Returns literal character vector on every call, unless close failed.

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target | SimulinkRealTime.target.reboot

Introduced in R2014a

6-197



6 MATLAB API

SimulinkRealTime.target.getlog
Portion of output logs from target object

Syntax

log = getlog(target_object, log_name)

log = getlog(target_object, log_name, first_point)

log = getlog(target_object, log_name, first_point, number_samples)

log = getlog(target_object, log_name, first_point, number_samples, 

decimation)

Description

log = getlog(target_object, log_name) returns all the samples from a log of
type log_name, starting from the first point without decimation.

log = getlog(target_object, log_name, first_point) returns the sample at
first_point from a log of type log_name.

log = getlog(target_object, log_name, first_point, number_samples)

returns number_samples samples from a log of type log_name, starting from
first_point without decimation.

log = getlog(target_object, log_name, first_point, number_samples, 

decimation) returns number_samples samples from a log of type log_name, starting
from first_point, with a decimation of decimation.

Examples

Retrieve All Values

Read the TimeLog and OutputLog samples from model xpcosc using the default
settings. Plot the results.

Read TimeLog and OutputLog samples

6-198



 SimulinkRealTime.target.getlog

tg = slrt;

timelog = getlog(tg, 'TimeLog');

outputlog = getlog(tg, 'OutputLog');

Plot the data

plot(timelog, outputlog);

Retrieve 10 Values Starting from 5

Read 10 samples starting from 5 of TimeLog and OutputLog

Read 5 TimeLog samples

tg = slrt;

timelog = getlog(tg, 'TimeLog', 5, 10)

timelog =

    0.0010

    0.0013

    0.0015

    0.0018

    0.0020

    0.0023

    0.0025

    0.0027

    0.0030

    0.0033

Read 10 OutputLog samples

outputlog = getlog(tg, 'OutputLog', 5, 10)

outputlog =

   -1.6200   -4.0000

   -2.3450   -4.0000

   -3.0990   -4.0000

   -3.8345   -4.0000

   -4.5098   -4.0000

   -5.0907   -4.0000

   -5.5518   -4.0000

   -5.8772   -4.0000

   -6.0606   -4.0000

6-199



6 MATLAB API

   -6.1046   -4.0000

Plot the data

plot(timelog, outputlog);

Retrieve Decimated Values Starting from Offset

Read 10 samples at decimation 2 starting from 5 of TimeLog and OutputLog

Read 5 TimeLog samples

tg = slrt;

timelog = getlog(tg, 'TimeLog', 5, 10, 2)

timelog =

    0.0010

    0.0015

    0.0020

    0.0025

    0.0030

    0.0035

    0.0040

    0.0045

    0.0050

    0.0055

Read 10 OutputLog samples

outputlog = getlog(tg, 'OutputLog', 5, 10, 2)

 -1.6200   -4.0000

   -3.0990   -4.0000

   -4.5098   -4.0000

   -5.5518   -4.0000

   -6.0606   -4.0000

   -6.0199   -4.0000

   -5.5384   -4.0000

   -4.8028   -4.0000

   -4.0224   -4.0000

   -3.3784   -4.0000

Plot the data

6-200



 SimulinkRealTime.target.getlog

plot(timelog, outputlog);

Retrieve a Value

Read one sample starting from sample 8 of TimeLog and OutputLog

Read 5 TimeLog samples

tg = slrt;

timelog = getlog(tg, 'TimeLog', 8)

timelog =

    0.0018

Read 10 OutputLog samples

outputlog = getlog(tg, 'OutputLog', 8)

outputlog =

   -3.8345   -4.0000

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

log_name — Selects information type to retrieve
'TimeLog' | 'StateLog' | 'OutputLog' | 'TETLog'

• TimeLog — Timestamps for each logged value
• StateLog — Discrete and continuous state of blocks
• OutputLog — Value of root-level outport blocks

6-201



6 MATLAB API

• TETLog — Task execution times (TET)

Example: 'Timelog'

Data Types: char

first_point — Sample from which to start retrieving data
1 (default) | positive integer

If specified without number_samples, this parameter returns only the value at
first_point.

Example: 10

number_samples — Number of samples to retrieve
all points in log (default) | positive integer

Number of samples to retrieve starting with first_point, after decimation.

Example: 10

decimation — Select every decimationth value
1 (default) | positive integer

1 returns all sample points. n returns every nth sample point. Must be used with
first_point and number_samples.

Example: 2

Output Arguments

log — User-defined MATLAB variable
matrix

Variable receives the log entries as a matrix

See Also

Topics
“Set Configuration Parameters”

6-202



 SimulinkRealTime.target.getlog

Introduced in R2014a

6-203



6 MATLAB API

SimulinkRealTime.target.getparam

Read value of observable parameter in real-time application

Syntax

value = getparam(target_object, parameter_block_name, 

parameter_name)

value = getparam(target_object, parameter_name)

value = getparam(target_object, parameter_index)

Description

value = getparam(target_object, parameter_block_name, 

parameter_name) returns the value of block parameter parameter_name in block
parameter_block_name.

value = getparam(target_object, parameter_name) returns the value of
MATLAB variable parameter_name.

value = getparam(target_object, parameter_index) returns the value of the
parameter associated with parameter_index.

Examples

Get Block Parameter by Parameter and Block Names

Get the value of block parameter 'Amplitude' of block 'Signal Generator'.

tg = slrt;

getparam(tg, 'Signal Generator', 'Amplitude')

ans =

6-204



 SimulinkRealTime.target.getparam

     4

Get MATLAB Variable by Scalar Parameter Name

Get the value of MATLAB variable 'Freq'.

tg = slrt;

getparam(tg, 'Freq')

ans =

     20

Get MATLAB Variable by Parameter Structure Name

Get the value of parameter structure 'oscp'.

tg = slrt;

getparam(tg, 'oscp')

ans = 

    G0: 1000000

    G1: 400

    G2: 1000000

Get MATLAB Variable by Parameter Structure Field Name

Get the value of MATLAB variable 'oscp.G2'.

tg = slrt;

getparam(tg, 'oscp.G2')

ans =

     1000000

Get Block Parameter by Parameter Index

Get the parameter index of block parameter 'Gain' of block 'Gain', and then get its
value.

tg = slrt;

pid = getparamid(tg, 'Gain', 'Gain');

6-205



6 MATLAB API

getparam(tg, pid)

ans =

     1000000

Get MATLAB Variable by Parameter Index

Get the parameter index of MATLAB variable 'G2', and then get its value.

tg = slrt;

pid = getparamid(tg, '', 'G2');

getparam(tg, pid)

ans =

     1000000

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

parameter_block_name — Hierarchical name of the originating block
character vector

The empty character vector ('') as a block name marks a MATLAB variable that
provides the value for a block parameter. The MATLAB variable is not associated with a
particular block.
Example: 'Gain1', ''

parameter_name — Name of the parameter
character vector

6-206



 SimulinkRealTime.target.getparam

The parameter can designate either a block parameter or a MATLAB variable that
provides the value for a block parameter. To be accessible via parameter name, the
parameter must be observable.

Note: Simulink Real-Time does not support parameters of multiword data types.

Example: 'Gain', 'oscp.G1', 'oscp', 'G2'

parameter_index — Index number of the parameter
nonnegative integer

The parameter index can mark either a block parameter or a MATLAB variable that
provides the value for a block parameter. To be accessible via parameter index, the
parameter must be observable.

To access a parameter index, type tg.ShowParameters = 'on' in the Command
Window, and count lines starting with 0.

Note: Parameter access by parameter index will be removed in a future release. Access
parameters by parameter name instead.

Example: 0, 1

Output Arguments

value — Value of parameter
scalar | complex | structure

Simulink Real-Time does not support parameters of multiword data types.

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target.getparamid | SimulinkRealTime.target.setparam

6-207



6 MATLAB API

Topics
“Tunable Block Parameters and MATLAB Variables”
“Nonobservable Parameters”

Introduced in R2014a

6-208



 SimulinkRealTime.target.getparamid

SimulinkRealTime.target.getparamid

Parameter index from parameter hierarchical name

Syntax

parameter_index = getparamid(target_object, parameter_block_name, 

parameter_name)

parameter_index = getparamid(target_object, '', parameter_name)

Description

parameter_index = getparamid(target_object, parameter_block_name, 

parameter_name) returns the parameter-list index of a block parameter. The function
searches the parameter list by the path to the block and the parameter name.

Enter for parameter_block_name the mangled name that the Simulink Coder software
uses for code generation. You can determine the mangled name as follows:

• If you do not have special characters in your model, use the gcb function.
• If the blocks of interest have special characters, retrieve the mangled name using

tg.showparam = 'on'.

For example, if carriage return '\n' is part of the block path, the mangled name
returns with carriage returns replaced by spaces.

Enter the names in full. The names are case-sensitive.

parameter_index = getparamid(target_object, '', parameter_name)

returns the parameter-list index of a MATLAB variable that provides the value for a
block parameter. The function searches the parameter list by the parameter name. The
name is case-sensitive.

For the block name argument, enter the empty character vector ('').

6-209



6 MATLAB API

Examples

Get Block Parameter by Parameter and Block Names

Get the value of block parameter 'Amplitude' of block 'Signal Generator'

tg = slrt;

pid = getparamid(tg, 'Signal Generator', 'Amplitude');

getparam(tg, pid)

ans =

     4

Get MATLAB Variable by Scalar Parameter Name

Get the value of MATLAB variable 'Freq'

tg = slrt;

pid = getparamid(tg, '', 'Freq');

getparam(tg, pid)

ans =

     20

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

parameter_block_name — Hierarchical name of the originating block
character vector

6-210



 SimulinkRealTime.target.getparamid

The empty character vector ('') as a block name marks a MATLAB variable that
provides the value for a block parameter. The MATLAB variable is not associated with a
particular block.
Example: 'Gain1', ''

parameter_name — Name of the parameter
character vector

The parameter can designate either a block parameter or a MATLAB variable that
provides the value for a block parameter. To be accessible via parameter name, the
parameter must be observable.

Note: Simulink Real-Time does not support parameters of multiword data types.

Example: 'Gain', 'oscp.G1', 'oscp', 'G2'

Output Arguments

parameter_index — Index number of the parameter
nonnegative integer

The parameter index can mark either a block parameter or a MATLAB variable that
provides the value for a block parameter. To be accessible via parameter index, the
parameter must be observable.

To access a parameter index, type tg.ShowParameters = 'on' in the Command
Window, and count lines starting with 0.

Note: Parameter access by parameter index will be removed in a future release. Access
parameters by parameter name instead.

Example: 0, 1

6-211



6 MATLAB API

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target.getparam | SimulinkRealTime.target.setparam

Topics
“Tunable Block Parameters and MATLAB Variables”
“Nonobservable Parameters”

Introduced in R2014a

6-212



 SimulinkRealTime.target.getparamname

SimulinkRealTime.target.getparamname

Block path and parameter name from parameter index

Syntax

[block_path, parameter_name] = getparamname(target_object, 

parameter_index)

Description

[block_path, parameter_name] = getparamname(target_object, 

parameter_index) returns a vector containing the block path and the parameter name
for the parameter specified by parameter_index.

Examples

Get Block Path and Parameter Name for Parameter

Extract the block path and parameter name for parameter 6 of 'ex_slrt_sf_car'.

tg = slrt;

[block_path, parameter_name] = getparamname(tg,6)

block_path =

  1×17 char array

Engine/Integrator

parameter_name =

  1×16 char array

6-213



6 MATLAB API

InitialCondition

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

parameter_index — Index number of the parameter
nonnegative integer

The parameter index can mark either a block parameter or a MATLAB variable that
provides the value for a block parameter. To be accessible via parameter index, the
parameter must be observable.

To access a parameter index, type tg.ShowParameters = 'on' in the Command
Window, and count lines starting with 0.

Note: Parameter access by parameter index will be removed in a future release. Access
parameters by parameter name instead.

Example: 0, 1

Output Arguments

block_path — Hierarchical path to block containing parameter
character vector

The path consists of nested blocks separated by '/'.

parameter_name — Name of parameter in block
character vector

6-214



 SimulinkRealTime.target.getparamname

The parameter name as given in the block properties list.

See Also

See Also
Real-Time Application | Real-Time Application Properties

Introduced in R2014a

6-215



6 MATLAB API

SimulinkRealTime.target.getPCIInfo
Return information about PCI boards installed in target computer

Syntax

getPCIInfo(target_object)

getPCIInfo(target_object,'ethernet')

getPCIInfo(target_object, 'all')

getPCIInfo(target_object, 'verbose')

pci_devices = getPCIInfo(target_object, ___ )

getPCIInfo(target_object, 'supported')

pci_devices_supported = getPCIInfo(target_object, 'supported')

Description

getPCIInfo(target_object) queries the target computer, represented by
target_object, for installed PCI devices other than Ethernet controllers that the
Simulink Real-Time block library supports. To retrieve information about Ethernet
controllers, use the 'ethernet' option.

The software displays in the Command Window information about the PCI devices that
getPCIInfo found, including:

• PCI bus number
• Slot number (PCI device number)
• PCI function number
• Assigned IRQ number
• Vendor (manufacturer) name
• Device (board) name
• Device type
• Vendor PCI ID
• Device PCI ID
• Device release version

6-216



 SimulinkRealTime.target.getPCIInfo

Before you can use this call, check that the target computer has started under the
Simulink Real-Time kernel and that the Ethernet link is working. The real-time
application can be loaded or the loader can be active and waiting for input. You can check
these preconditions by calling the function SimulinkRealTime.pingTarget.

Before building the model, you can use getPCIInfo to find resources to enter into
a driver block dialog box. Such resources include PCI bus number, slot number, and
assigned IRQ number.

getPCIInfo(target_object,'ethernet') queries the target computer, represented
by target_object, for Ethernet controllers that are installed.

getPCIInfo(target_object, 'all') displays information about all of the PCI
devices found on the target computer represented by target_object. This information
includes graphics controllers, Ethernet cards, SCSI cards, and devices that are part of
the motherboard chip set (for example, PCI-to-PCI bridges).

getPCIInfo(target_object, 'verbose') shows the information displayed by
getPCIInfo(target_object, 'all') for the target computer represented by
target_object, plus information about the PCI addresses that the BIOS assigns to this
board.

pci_devices = getPCIInfo(target_object, ___ ) queries the target computer
represented by target_object according to the additional arguments you supplied. The
call returns a structure containing information about the PCI devices that the software
found on the target computer.

getPCIInfo(target_object, 'supported') displays a list of the PCI devices
supported by the Simulink Real-Time block library. This call does not access the target
computer, so the Ethernet link does not have to be active.

pci_devices_supported = getPCIInfo(target_object, 'supported') returns
a structure containing a list of devices supported by Simulink Real-Time. This call does
not access the target computer, so the Ethernet link does not have to be active.

Examples

Display Information for Supported Devices on Default Computer

Start the default target computer with the Simulink Real-Time kernel. Check the
connection between the development and the target computer. At the command prompt,

6-217



6 MATLAB API

type the command on the development computer. The command returns all supported
devices other than Ethernet cards.

slrtpingtarget

target_object = slrt;

getPCIInfo(target_object)

List of installed PCI devices:

General Standards        PMC-ADADIO

     Bus 6, Slot 4, Function 0, IRQ 10

     AI AO DI DO

     VendorID 0x10b5, DeviceID 0x9080, SubVendorID 0x10b5, ...

         SubDeviceID 0x2370

     A/D Chan: 0, D/A Chan: 4, DIO Chan: 8

     Released in: R14SP2 or Earlier

     Notes: Uses Compact PCI and PCI carriers 

.

.

.

Display Information for Ethernet Controllers on Default Computer

Start the default target computer with the Simulink Real-Time kernel. Check the
connection between the development and target computers. At the MATLAB command
prompt, type the command on the development computer.

slrtpingtarget

target_object = slrt;

getPCIInfo(target_object, 'ethernet')

List of installed PCI devices:

Intel                    82579LM

     Bus 0, Slot 25, Function 0, IRQ 3

     Ethernet controller

     VendorID 0x8086, DeviceID 0x1502, SubVendorID 0x15bd, ...

         SubDeviceID 0x100a

     Released in: R2012b

     Notes: Intel 8254x Gigabit Ethernet series

Intel                    82574L

     Bus 5, Slot 0, Function 0, IRQ 10

     Ethernet controller

6-218



 SimulinkRealTime.target.getPCIInfo

     VendorID 0x8086, DeviceID 0x10d3, SubVendorID 0x15bd, ...

         SubDeviceID 0x100a

     Released in: R2010a

     Notes: Intel 8254x Gigabit Ethernet series

Display Information for All Devices on Default Computer

Start the default target computer with the Simulink Real-Time kernel. Check the
connection between the development and target computers. At the command prompt,
type the command on the development computer.

slrtpingtarget

target_object = slrt;

getPCIInfo(target_object, 'all')

List of installed PCI devices:

Intel                    Unknown

     Bus 0, Slot 0, Function 0, IRQ 0

     Host Bridge

     VendorID 0x8086, DeviceID 0x0150, SubVendorID 0x8086, ...

         SubDeviceID 0x0150

.

.

.

Intel                    82579LM

     Bus 0, Slot 25, Function 0, IRQ 3

     Ethernet controller

     VendorID 0x8086, DeviceID 0x1502, SubVendorID 0x15bd, ...

         SubDeviceID 0x100a

     Released in: R2012b

     Notes: Intel 8254x Gigabit Ethernet series.

.

.

.

Display Verbose Information for All Devices on Default Computer

Start the default target computer with the Simulink Real-Time kernel. Check the
connection between the development and target computers. At the command prompt,
type the command on the development computer.

slrtpingtarget

6-219



6 MATLAB API

target_object = slrt;

getPCIInfo(target_object, 'verbose')

List of installed PCI devices:

Intel                    Unknown

     Bus 0, Slot 0, Function 0, IRQ 0

     Host Bridge

     VendorID 0x8086, DeviceID 0x0150, SubVendorID 0x8086, ...

         SubDeviceID 0x0150

     BaseClass 6, SubClass 0

Intel                    Unknown

     Bus 0, Slot 1, Function 0, IRQ 10

     PCI-to-PCI Bridge

     VendorID 0x8086, DeviceID 0x0151, SubVendorID 0x0000, ...

         SubDeviceID 0x0000

     BaseClass 6, SubClass 4

     BAR BaseAddress AddressSpace       MemoryType PreFetchable

      2)       10100       Memory   32-bit decoder           no

      3)          F0       Memory   32-bit decoder           no

      4)        FFF0       Memory   32-bit decoder           no

      5)       1FFF0          I/O                              

.

.

.

Return Information for Supported Devices on Default Computer

Start the default target computer with the Simulink Real-Time kernel. Check the
connection between the development and target computers. At the command prompt,
type the command on the development computer. The command returns all supported
devices other than Ethernet cards. Display a structure in the vector.

slrtpingtarget

target_object = slrt;

pci_devices = getPCIInfo(target_object);

pci_devices(16)

ans = 

  struct with fields:

              Bus: 6

6-220



 SimulinkRealTime.target.getPCIInfo

             Slot: 4

         Function: 0

         VendorID: '10B5'

         DeviceID: '9080'

      SubVendorID: '10B5'

      SubDeviceID: '2370'

        BaseClass: '11'

         SubClass: '80'

        Interrupt: 10

    BaseAddresses: [1×6 struct]

       VendorName: 'General Standards'

          Release: 'R14SP2 or Earlier'

            Notes: 'Uses Compact PCI and PCI carriers'

       DeviceName: 'PMC-ADADIO'

       DeviceType: 'AI AO DI DO'

           ADChan: '0'

           DAChan: '4'

          DIOChan: '8' 

Return Information for All Devices on Default Computer

Start the default target computer with the Simulink Real-Time kernel. Check the
connection between the development and target computers. At the command prompt,
type the command on the development computer. Display the first structure in the
vector.

slrtpingtarget

target_object = slrt;

pci_devices = getPCIInfo(target_object, 'all');

pci_devices(1)

ans = 

  struct with fields:

              Bus: 0

             Slot: 0

         Function: 0

         VendorID: '8086'

         DeviceID: '150'

      SubVendorID: '8086'

      SubDeviceID: '150'

        BaseClass: '6'

         SubClass: '0'

6-221



6 MATLAB API

        Interrupt: 0

    BaseAddresses: [1×6 struct]

       VendorName: 'Intel'

          Release: ''

            Notes: ''

       DeviceName: 'Unknown'

       DeviceType: 'Host Bridge'

           ADChan: ''

           DAChan: ''

          DIOChan: ''

Return Verbose Information for All Devices Via target_object

Start the default target computer with the Simulink Real-Time kernel. To get the
target_object, use SimulinkealTime.target. Check the connection between the
development and target computers. At the command prompt, type the command on the
development computer. Display the first structure in the vector.

SimulinkRealTime.pingTarget('TargetPC1')

pci_devices = getPCIInfo(target_object,'verbose');

pci_devices(1)

ans = 

  struct with fields:

              Bus: 0

             Slot: 0

         Function: 0

         VendorID: '8086'

         DeviceID: '150'

      SubVendorID: '8086'

      SubDeviceID: '150'

        BaseClass: '6'

         SubClass: '0'

        Interrupt: 0

    BaseAddresses: [1×6 struct]

       VendorName: 'Intel'

          Release: ''

            Notes: ''

       DeviceName: 'Unknown'

       DeviceType: 'Host Bridge'

           ADChan: ''

           DAChan: ''

6-222



 SimulinkRealTime.target.getPCIInfo

          DIOChan: ''

Display Information for All Supported Devices

At the command prompt, type the commands on the development computer. The target
computer does not have to be active.

target_object = SimulinkRealTime.target

getPCIInfo(target_object, 'supported')

List of supported PCI devices:

Vendor                    Device                    Type...

ADLINK                    PCI-6208A                 AO DI DO ...

B&B Electronics (Quatech) DSCP-200/300 (PXI)        Serial Ports...

.

.

.

Speedgoat                 IO333-325K-SFP (XMC-FPGA) DI DO (LVDS/...

Speedgoat                 IO333-410K-SFP (XMC-FPGA) DI DO (LVDS/...

Return Information for One Supported Device

At the command prompt, type the commands on the development computer. The target
computer does not have to be active.

target_object = SimulinkRealTime.target

pci_devices_supported = getPCIInfo(target_object, 'supported');

pci_devices_supported(1)

ans = 

  struct with fields:

       VendorID: '144A'

       DeviceID: '6208'

    SubVendorID: '-1'

    SubDeviceID: '-1'

     DeviceName: 'PCI-6208A'

     VendorName: 'ADLINK'

     DeviceType: 'AO DI DO'

         DAChan: '8'

6-223



6 MATLAB API

         ADChan: '0'

        DIOChan: '4'

        Release: 'R14SP2 or Earlier'

          Notes: 'PCI-6208A features 8 current outputs with ...

                 ranges of 0-20 mA, 4-20 mA, and 5-25 mA'

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

Output Arguments

pci_devices — Information about the PCI devices in the target computer
vector

The vector that getPCIInfo returns when you call it without an argument contains
information only for those PCI devices that the Simulink Real-Time library blocks
support.

The vectors returned by getPCIInfo with the arguments 'all' and 'verbose'
contain information about all PCI devices in the target computer. The vectors are
identical.

The fields in this structure are:

Bus — PCI bus number of device
scalar

Bus and Slot uniquely identify a device in the target computer.

Slot — Slot number (PCI device number) of device
scalar

6-224



 SimulinkRealTime.target.getPCIInfo

Slot and Bus uniquely identify a device in the target computer.

Function — PCI function number of device
scalar

Function uniquely identifies the function of a device in the target computer.

VendorID — Identifier for manufacturer of the device
character vector

Hexadecimal numeric character vector containing the identifier that the PCI standards
organization assigns to the manufacturer of this device or bus adapter.

DeviceID — Identifier for device among the devices manufactured by the vendor
character vector

Hexadecimal numeric character vector containing the identifier that the manufacturer
assigns to this device or bus adapter.

SubVendorID — Identifier for manufacturer of subsystem
character vector

Hexadecimal numeric character vector containing the identifier that the PCI standards
organization assigns to the manufacturer of the entire subsystem (board).

SubDeviceID — Identifier for subsystem among the devices manufactured by the subvendor
character vector

Hexadecimal numeric character vector containing the identifier that the manufacturer
assigns to this subsystem (board).

BaseClass — Standard PCI class of the device
character vector

Hexadecimal numeric character vector containing the standard PCI base classification of
this device or bus adapter. BaseClass and SubClass identify the type and function of
the device.

SubClass — Standard PCI subclass of the device
character vector

Hexadecimal numeric character vector containing the standard PCI subclass
classification of this device or bus adapter. SubClass and BaseClass identify the type
and function of the device.

6-225



6 MATLAB API

Interrupt — IRQ used by the device
scalar

Provides the board-level interrupt that the device or bus adapter uses to trigger I/O with
the target computer CPU.

BaseAddresses — Information for each Base Address Register (BAR) used by the device
vector

For each BAR that this device or bus adapter uses, the vector contains a structure with
the following fields:

AddressSpaceIndicator — Indicates whether the address is a memory or I/O address
0 | 1

• 0 — Memory address
• 1 — I/O address

BaseAddress — Memory address used by the device
character vector

Hexadecimal character vector containing the base memory address that the device uses.

MemoryType — Indicates the size of the address decode, 32-bit or 64-bit
0 | 1

Not used if AddressSpaceIndicator is 1 (I/O address).

• 0 — 32-bit address decode
• 1 — 64-bit address decode

Prefetchable — Indicates whether the memory is prefetchable
0 | 1

Not used if AddressSpaceIndicator is 1 (I/O address).

• 0 — Address is not prefetchable
• 1 — Address is prefetchable

VendorName — Name of vendor of device
character vector

6-226



 SimulinkRealTime.target.getPCIInfo

Identifies the vendor of the specific device or bus adapter. Set to 'Unknown' for unknown
devices or bus adapters.

Release — MATLAB release version in which driver became available
character vector

If the Simulink Real-Time block library supports the device, it contains the MATLAB
and Simulink release version in which the driver was released. Otherwise, it contains an
empty vector.

Notes — Additional information about the device
character vector

Contains additional description of the device or bus adapter.

DeviceName — Name of device
character vector

Identifies the specific device or bus adapter. Set to 'Unknown' for unknown devices or
bus adapters.

DeviceType — Identifies the functions of the device
character vector

Contains abbreviations such as 'DI' (digital input) that indicate the function or
functions of the device or bus adapter.

ADChan — Number of analog inputs
character vector

Decimal numeric character vector containing the number of analog inputs to the device.

DAChan — Number of analog outputs
character vector

Decimal numeric character vector containing the number of analog outputs from the
device.

DIOChan — Number of digital inputs and outputs
character vector

Decimal numeric character vector containing the number of digital inputs and outputs to
and from the device.

6-227



6 MATLAB API

pci_devices_supported — Information about the PCI devices supported by the product
vector

Vector of information about the devices and bus adapters that the blocks in the Simulink
Real-Time block library represent.

The fields are as follows:

VendorID — Identifier for manufacturer of the device
character vector

Hexadecimal numeric character vector containing the identifier that the PCI standards
organization assigns to the manufacturer of this device or bus adapter.

DeviceID — Identifier for device among the devices manufactured by the vendor
character vector

Hexadecimal numeric character vector containing the identifier that the manufacturer
assigns to this device or bus adapter.

SubVendorID — Identifier for manufacturer of subsystem
character vector

Hexadecimal numeric character vector containing the identifier that the PCI standards
organization assigns to the manufacturer of the entire subsystem (board).

SubDeviceID — Identifier for subsystem among the devices manufactured by the subvendor
character vector

Hexadecimal numeric character vector containing the identifier that the manufacturer
assigns to this subsystem (board).

DeviceName — Name of device
character vector

Identifies the specific device or bus adapter. Set to 'Unknown' for unknown devices or
bus adapters.

VendorName — Name of vendor of device
character vector

Identifies the vendor of the specific device or bus adapter. Set to 'Unknown' for unknown
devices or bus adapters.

6-228



 SimulinkRealTime.target.getPCIInfo

DeviceType — Identifies the functions of the device
character vector

Contains abbreviations such as 'DI' (digital input) that indicate the function or
functions of the device or bus adapter.

DAChan — Number of analog outputs
character vector

Decimal numeric character vector containing the number of analog outputs from the
device.

ADChan — Number of analog inputs
character vector

Decimal numeric character vector containing the number of analog inputs to the device.

DIOChan — Number of digital inputs and outputs
character vector

Decimal numeric character vector containing the number of digital inputs and outputs to
and from the device.

Release — MATLAB release version in which driver became available
character vector

If the Simulink Real-Time block library supports the device, it contains the MATLAB
and Simulink release version in which the driver was released. Otherwise, it contains an
empty vector.

Notes — Additional information about the device
character vector

Contains additional description of the device or bus adapter.

See Also

See Also
Real-Time Application | Real-Time Application Properties

6-229



6 MATLAB API

Topics
“PCI Board Information”
“Command-Line Ethernet Card Selection by Index”
“PCI Bus I/O Devices”

Introduced in R2014a

6-230



 SimulinkRealTime.target.getscope

SimulinkRealTime.target.getscope
Return scope identified by scope number

Syntax

scope_object_vector = getscope(target_object)

scope_object = getscope(target_object, scope_number)

scope_object_vector = getscope(target_object, scope_number_vector)

Description

scope_object_vector = getscope(target_object) returns a vector containing
objects representing all of the existing scopes on the target computer.

scope_object = getscope(target_object, scope_number) returns the object
representing an existing scope that has the given scope number.

scope_object_vector = getscope(target_object, scope_number_vector)

returns a vector containing objects representing existing scopes that have the given scope
numbers.

If you try to get a nonexistent scope, the result is an error.

6-231



6 MATLAB API

Examples
All Scopes on the Target Computer

To view the properties of all scopes on the target, get a vector of scope objects.

Get all scopes on the target computer.

tg = slrt;

scope_object_vector = getscope(tg)

scope_object_vector = 

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 1

   Status               = Interrupted

   Type                 = Target

   NumSamples           = 500

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = 5  : Signal Generator

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 1

   TriggerSample        = 0

   DisplayMode          = Redraw (Graphical)

   YLimit               = Auto

   Grid                 = on

   Signals              = 5  : Signal Generator

                          6  : Sum

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 2

   Status               = Interrupted

   Type                 = Target

   NumSamples           = 250

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = 0  : Gain

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

6-232



 SimulinkRealTime.target.getscope

   TriggerScope         = 2

   TriggerSample        = 0

   DisplayMode          = Redraw (Graphical)

   YLimit               = Auto

   Grid                 = on

   Signals              = 0  : Gain

                          1  : Gain1

                          2  : Gain2

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 3

   Status               = Interrupted

   Type                 = Host

   NumSamples           = 250

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = -1 

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 3

   TriggerSample        = 0

   StartTime            = -1.000000

   Data                 = Matrix (250 x 0)

   Time                 = Matrix (250 x 1)

   Signals              = no Signals defined

Change the Number of Samples

To change the number of samples, get a scope object, and then change the scope object
property NumSamples.

Get a scope object for scope 1.

tg = slrt;

scope_object = getscope(tg,1)

scope_object = 

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 1

   Status               = Interrupted

   Type                 = Target

6-233



6 MATLAB API

   NumSamples           = 250

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = 5  : Signal Generator

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 1

   TriggerSample        = 0

   DisplayMode          = Redraw (Graphical)

   YLimit               = Auto

   Grid                 = on

   Signals              = 5  : Signal Generator

                          6  : Sum

Update property NumSamples.

scope_object.NumSamples = 500

scope_object = 

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 1

   Status               = Interrupted

   Type                 = Target

   NumSamples           = 500

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = 5  : Signal Generator

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 1

   TriggerSample        = 0

   DisplayMode          = Redraw (Graphical)

   YLimit               = Auto

   Grid                 = on

   Signals              = 5  : Signal Generator

                          6  : Sum

Vector of Scope Objects

To view the properties of scopes 1 and 2 on the target computer, get a vector of scope
objects.

6-234



 SimulinkRealTime.target.getscope

tg = slrt;

scope_object_vector = getscope(tg, [1,2])

scope_object_vector = 

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 1

   Status               = Interrupted

   Type                 = Target

   NumSamples           = 500

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = 5  : Signal Generator

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 1

   TriggerSample        = 0

   DisplayMode          = Redraw (Graphical)

   YLimit               = Auto

   Grid                 = on

   Signals              = 5  : Signal Generator

                          6  : Sum

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 2

   Status               = Interrupted

   Type                 = Target

   NumSamples           = 250

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = 0  : Gain

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 2

   TriggerSample        = 0

   DisplayMode          = Redraw (Graphical)

   YLimit               = Auto

   Grid                 = on

   Signals              = 0  : Gain

                          1  : Gain1

6-235



6 MATLAB API

                          2  : Gain2

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

scope_number — New scope number
unsigned integer

New scope number. This argument is optional. The default value is the next available
integer in the target object property Scopes.

If you enter the scope number for an existing scope object, the result is an error.
Example: 1

scope_number_vector — Vector of new scope numbers
unsigned integer vector

Vector of new scope numbers. If you enter the scope number for an existing scope object,
the result is an error.
Example: [2, 3]

Output Arguments

scope_object — Object representing an existing scope
object

Object representing an existing scope

scope_object_vector — Vector of objects representing an existing scope
object

6-236



 SimulinkRealTime.target.getscope

Vector containing objects representing an existing scope

See Also

See Also
Real-Time Application Properties | Real-Time Application | Real-
Time File Scope | Real-Time Host Scope | Real-Time Target Scope |
SimulinkRealTime.target.addscope | SimulinkRealTime.target.remscope

Topics
“Application and Driver Scripts”

Introduced in R2014a

6-237



6 MATLAB API

SimulinkRealTime.target.getsignal
Value of signal

Syntax

signal_value = getsignal(target_object, signal_name)

signal_value = getsignal(target_object, signal_index)

Description

signal_value = getsignal(target_object, signal_name) returns the value
of signal signal_name at the time the request is made. The value is not timestamped.
Successive calls to this function do not necessarily return successive signal values.

signal_value = getsignal(target_object, signal_index) returns the value
of the signal associated with signal_index at the time the request is made. The value
is not timestamped. Successive calls to this function do not necessarily return successive
signal values.

Examples

Get Value of Signal by Name

Get the value of signal 'Gain1'.

tg = slrt;

getsignal(tg, 'Gain1')

ans =  

-3.3869e+006

Get Value of Signal by Signal Index

Get the signal index of signal 'Gain1', and then get its value.

6-238



 SimulinkRealTime.target.getsignal

tg = slrt;

sid = getsignalid(tg, 'Gain1');

getsignal(tg, sid)

ans =  

-3.3869e+006

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

signal_name — Hierarchical name of signal from model
character vector

Simulink Real-Time constructs signal names in two ways:

• For blocks with a single signal, signal_name is the same as the block name.
• For blocks with multiple signals, Simulink Real-Time constructs signal_name by

appending ' /s1', ' /s2', . . , ' /sN' to the block name.

Example: 'Gain2', 'Feedback/Gain1', 'Byte Packing /s2'

signal_index — Index number of the signal
nonnegative integer

To be accessible via signal index, the signal must be observable.

Note: Signal access by signal index will be removed in a future release. Access signals by
signal name instead.

6-239



6 MATLAB API

Example: 0, 1

Output Arguments

signal_value — Value of signal
number | character vector

Virtual and bus signals, optimized signals, and signals of complex data types are not
observable.

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target.getsignalid

Topics
“Nonobservable Signals”

Introduced in R2014a

6-240



 SimulinkRealTime.target.getsignalid

SimulinkRealTime.target.getsignalid
Signal index from signal hierarchical name

Syntax

signal_index = getsignalid(target_object, signal_name)

Description

signal_index = getsignalid(target_object, signal_name) returns the index
of a signal from the signal list, based on the path to the block and the signal name.

Enter for signal_name the mangled name that the Simulink Coder software uses for
code generation. You can determine the mangled name as follows:

• If you do not have special characters in your model, use the gcb function.
• If the blocks of interest have special characters, retrieve the mangled name using

tg.showsignals='on'.

For example, if carriage return '\n' is part of the block path, the mangled name
returns with carriage returns replaced by spaces.

Enter the names in full. The names are case-sensitive.

Examples

Top-Level Block with Single Output

Get signal index for single output of block Gain1.

tg = slrt;

getsignalid(tg, 'Gain1')

ans = 

6-241



6 MATLAB API

6

Lower-Level Block with Single Output

Get signal index for single output of block Feedback/Gain1.

tg = slrt;

getsignalid(tg, 'Feedback/Gain1')

ans = 

6

Top-Level Block with Multiple Outputs

Get signal index for output signal 2 of block Byte Packing.

tg = slrt;

signal_index = getsignalid(tg,'Byte Packing /s2')

signal_index =

           1

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

signal_name — Hierarchical name of signal from model
character vector

Simulink Real-Time constructs signal names in two ways:

• For blocks with a single signal, signal_name is the same as the block name.

6-242



 SimulinkRealTime.target.getsignalid

• For blocks with multiple signals, Simulink Real-Time constructs signal_name by
appending ' /s1', ' /s2', . . , ' /sN' to the block name.

Example: 'Gain2', 'Feedback/Gain1', 'Byte Packing /s2'

Output Arguments

signal_index — Index number of the signal
nonnegative integer

To be accessible via signal index, the signal must be observable.

Note: Signal access by signal index will be removed in a future release. Access signals by
signal name instead.

Example: 0, 1

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target.getsignal

Topics
“Nonobservable Signals”

Introduced in R2014a

6-243



6 MATLAB API

SimulinkRealTime.target.getsignalidsfromlabel
Vector of signal indices

Syntax

index_vector = getsignalidsfromlabel(target_object, signal_label)

Arguments

target_object Name of a target object.
signal_label Signal label (from Simulink model).

Description

index_vector = getsignalidsfromlabel(target_object, signal_label)

returns a vector of one or more signal indices that are associated with the labeled signal,
signal_label.

Note: Signal access by signal index will be removed in a future release. Access signals by
signal name instead.

You must have labeled the signal for which you request the index using the Simulink
Signal name parameter. You must have applied a unique label. That is, only one signal
has the label signal_label.

The Simulink Real-Time software refers to Simulink signal names as signal labels.

Examples

Get the vector of signal indices for a signal labeled Gain:

tg = slrt;

6-244



 SimulinkRealTime.target.getsignalidsfromlabel

getsignalidsfromlabel(tg, 'xpcoscGain')

ans =

0

See Also

See Also
Real-Time Application | Real-Time Application Properties

Topics
“Signal Properties Controls” (Simulink)

Introduced in R2014a

6-245



6 MATLAB API

SimulinkRealTime.target.getsignallabel
Signal label for signal index

Syntax

signal_label = getsignallabel(target_object, signal_index)

Arguments

target_object Name of a target object.
signal_index Index number of the signal.

Note: Signal access by signal index will be removed in a
future release. Access signals by signal name instead.

Description

signal_label = getsignallabel(target_object, signal_index) returns the
signal label for the specified signal index, signal_index.

You must have labeled the signal for which you request the index using the Simulink
Signal name parameter. The Simulink Real-Time software refers to Simulink signal
names as signal labels.

Examples

Get the signal label for signal index 0:

tg = slrt;

getsignallabel(tg, 0)

ans =

xpcoscGain

6-246



 SimulinkRealTime.target.getsignallabel

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target.getsignalidsfromlabel

Topics
“Signal Properties Controls” (Simulink)

Introduced in R2014a

6-247



6 MATLAB API

SimulinkRealTime.target.getsignalname
Signal name from index list

Syntax

signal_name = getsignalname(target_object, signal_index)

Arguments

target_object Name of a target object.
signal_index Index number of the signal.

Note: Signal access by signal index will be removed in a
future release. Access signals by signal name instead.

signal_name Output name character vector of the signal.

Description

signal_name = getsignalname(target_object, signal_index) returns a
character vector from the index list for the specified signal index.

The signal name refers to the block path of the block whose output is the specified signal.
The software consru8cts the name according to the following rules:

• If the block has more than one output port, '/pn' is appended to the signal name,
where n is the port number (starting at 1).

• If the output port is not a scalar, '/sn' is appended to the signal name. The number
n is the index of signal signal_index within the vector or matrix. For this purpose,
the signals are flattened to one dimension. For example, the signals /s1, /s2, /s3,
and /s4 represent a 2 x 2 matrix.

These rules result in the following function behavior for block subsystem/path/to/-
block:

6-248



 SimulinkRealTime.target.getsignalname

Block Has... Function Returns...

• One output port.
• The port is a scalar port.

subsystem/path/to/block

• One output port.
• The port is a vector port.
• signal_index refers to the second

element within that vector.

subsystem/path/to/block/s2

• Three output ports.
• The second port outputs a scalar.
• signal_index refers to the output

from the second port.

subsystem/path/to/block/p2

• Three output ports.
• The second output port outputs a vector.
• signal_index refers to the seventh

element within that vector.

subsystem/path/to/block/p2/s7

Examples

Get the signal name of signal index 2:

tg = slrt;

sigName = getsignalname(tg,2)

sigName =

Gain2

See Also

See Also
Real-Time Application | Real-Time Application Properties

Introduced in R2014a

6-249



6 MATLAB API

SimulinkRealTime.target.load
Download real-time application to target computer

Syntax

target_object = load(target_object,real_time_application)

Description

target_object = load(target_object,real_time_application) loads
the application real_time_application onto the target computer represented by
target_object.

The call returns target_object, updated with the new state of the target.

Examples

Load Model

Load the real-time application xpcosc into target computer TargetPC1, represented by
target object tg. Start the application.

Get the target object.

tg = SimulinkRealTime.target('TargetPC1')

Simulink Real-Time Object

   Connected            = Yes

   Application          = loader

Load the real-time application.

load(tg, 'xpcosc')

Simulink Real-Time Object

   Connected            = Yes

6-250



 SimulinkRealTime.target.load

   Application          = xpcosc

   Mode                 = Real-Time Single-Tasking

   Status               = stopped

   CPUOverload          = none

   ExecTime             = 0.0000

   SessionTime          = 918.5713

   StopTime             = 0.200000

   SampleTime           = 0.000250

   AvgTET               = NaN

   MinTET               = 9999999.000000

   MaxTET               = 0.000000

   ViewMode             = 0

   TimeLog              = Vector(0) 

   StateLog             = Matrix (0 x 2)

   OutputLog            = Matrix (0 x 2)

   TETLog               = Vector(0) 

   MaxLogSamples        = 16666

   NumLogWraps          = 0

   LogMode              = Normal

   Scopes               = No Scopes defined  

   NumSignals           = 7

   ShowSignals          = off

   NumParameters        = 7

   ShowParameters       = off

Start the application.

start(tg)

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

6-251



6 MATLAB API

Data Types: struct

real_time_application — Name of real-time application
character vector

Name of the real-time application, without file extension. real_time_application can
also contain the absolute path to the real-time application, without file extension.

Build the application in the working folder on the development computer. By
default, after the Simulink Coder build process is complete, the Simulink Real-
Time software calls SimulinkRealTime.target.load. If a real-time application
was previously loaded, before downloading the new real-time application,
SimulinkRealTime.target.load unloads the old real-time application.

If you are running the real-time application in Standalone mode, a call to
SimulinkRealTime.target.load has no effect. To load a new application, rebuild the
standalone application files with the new application and transfer the updated files to
the target computer using SimulinkRealTime.fileSystem. Then, restart the target
computer with the new standalone application.
Data Types: char

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target.unload

Topics
“Application and Driver Scripts”

Introduced in R2014a

6-252



 SimulinkRealTime.target.loadparamset

SimulinkRealTime.target.loadparamset
Restore parameter values saved in specified file

Syntax

loadparamset(target_object, 'filename')

Description

loadparamset(target_object, 'filename') restores the real-time application
parameter values saved in the file filename. Save this file on a local drive of
the target computer. You must have a parameter file from a previous run of the
SimulinkRealTime.target.saveparamset method.

The functions saveparamset and loadparamset save or load only block parameters.
You cannot use these functions to save or load parameters defined only in the model
workspace.

Examples

Load Saved Parameters for Model

Load xpcosc parameters from a file named 'xpcosc_params.dat'

tg = slrt;

loadparamset(tg, 'xpcosc_param.dat')

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.

6-253



6 MATLAB API

Example: tg

Data Types: struct

filename — Name of a file in the target computer file system
character vector

In single quotation marks, enter the name of the file that contains the saved parameters.
Example: 'xpcosc_params.dat'

Data Types: char

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target.saveparamset

Introduced in R2014a

6-254



 SimulinkRealTime.target.ping

SimulinkRealTime.target.ping
Test communication between development and target computers

Syntax
link_status = ping(target_object)

link_status = ping(target_object, 'default')

[link_status connection_info] = ping(target_object)

[link_status connection_info] = ping(target_object, 'info')

[link_status connection_info] = ping(target_object, 'reset')

Description
link_status = ping(target_object) tests at a low level whether the development
computer and the target computer represented by target_object can communicate
using the settings stored in target_object. If a data channel is open between the
development and target computers, the function leaves it open.

link_status = ping(target_object, 'default') and [link_status 
connection_info] = ping(target_object) have the same behavior as
ping(target_object).

[link_status connection_info] = ping(target_object, 'info') uses
the information/control channel to return information about the Simulink Real-Time
connection between the development and target computers. If a data channel is open
between the development and target computers, the function leaves it open.

[link_status connection_info] = ping(target_object, 'reset') uses the
information/control channel to close an open data channel between the development and
target computers and then returns link status and connection information.

Examples
Check Communication with Responsive Target Computer

target_object = slrt;

6-255



6 MATLAB API

link_status = ping(target_object)

link_status =

success

Check Communication with Unresponsive Target Computer

target_object = slrt('TargetPC1');

link_status = ping(target_object)

link_status =

failed

Get Information About Active Target Computer Connection

target_object = slrt;

[link_status connection_info] = ping(target_object, 'info')

link_status =

success

connection_info =

10.10.10.100

Get Information About Inactive Target Computer Connection

target_object = slrt('TargetPC1');

[link_status connection_info] = ping(target_object, 'info')

link_status =

success

connection_info =

Disconnected

Get Information About Unresponsive Target Computer

target_object = slrt('TargetPC1');

[link_status connection_info] = ping(target_object, 'info')

link_status =

6-256



 SimulinkRealTime.target.ping

failed

connection_info =

'fail: Target machine did not respond.'

Reset Connected Target Computer

target_object = slrt;

[link_status connection_info] = ping(target_object, 'reset')

link_status =

success

connection_info =

Disconnected

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

Output Arguments

link_status — Reports if communication is possible between the development and target
computers
'success' | 'failed'

• If communication is possible between the development and target computers, this
value is 'success'. The value 'success' does not mean that Simulink Real-Time
has established a connection, only that one is possible.

6-257



6 MATLAB API

• If communication is not possible between the development and target computers,
this value is 'failed'. The function returns 'failed' for such reasons as a
faulty or disconnected Ethernet cable or an erroneous IP address setting. For
more information, see “Failed Communication Between Development and Target
Computers”.

connection_info — Reports whether a connection is active to a development computer
network address
'xx:xx:xx:xx' | 'Disconnected' | character vector

If you call ping without a second argument:

• If communication is possible, connection_info is empty.
• If communication is not possible, connection_info contains an error message.

If you call ping with a second argument of 'info':

• If the connection is active, connection_info reports the development computer
network address to which the target computer is connected.

• If the connection is not active, connection_info contains 'Disconnected'.
• If communication is not possible, connection_info contains an error message.

If you call ping with a second argument of 'reset':

• If communication is possible, connection_info contains 'Disconnected'.
• If communication is not possible, connection_info contains an error message.

See Also

See Also
Real-Time Application Properties | Real-Time Application | slrtpingtarget

Topics
“Failed Communication Between Development and Target Computers”

Introduced in R2014a

6-258



 SimulinkRealTime.target.reboot

SimulinkRealTime.target.reboot
Restart target computer

Syntax
reboot(target_object)

Description
reboot(target_object) restarts the target computer. If a target boot disk is still
present, reboot reloads the Simulink Real-Time kernel.

At the target computer command line, you can use the corresponding command:

reboot

Examples
Restart Target Computer 'TargetPC1'

Get a target object and restart the target computer that it represents

Get target object for target computer 'TargetPC1'

tg = SimulinkRealTime.target('TargetPC1')

Target: TargetPC1

   Connected            = Yes

   Application          = loader

Restart target computer.

reboot(tg)

Input Arguments
target_object — Object representing target computer
SimulinkRealTime.target object

6-259



6 MATLAB API

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

See Also

See Also
“Target Computer Commands” | Real-Time Application | Real-Time Application
Properties

Introduced in R2014a

6-260



 SimulinkRealTime.target.remscope

SimulinkRealTime.target.remscope
Remove scope from target computer

Syntax

remscope(target_object)

remscope(target_object, scope_number)

remscope(target_object, scope_number_vector)

Description

remscope(target_object) deletes all scopes from the target computer.

remscope(target_object, scope_number) deletes the scope represented by
scope_number from the target computer.

remscope(target_object, scope_number_vector) deletes the scopes represented
by the scope numbers listed in scope_number_vector from the target computer.

The method remscope has no return value. remscope does not delete the scope object
that represents the scope on the development computer.

6-261



6 MATLAB API

You can permanently remove only a scope that is added with the method addscope.
This scope is outside the model. If you remove a scope that a scope block added inside the
model, a subsequent run of that model recreates the scope.

At the target computer command line, you can remove one scope or all scopes:

remscope scope_number

remscope all

Examples

Remove All Scopes

tg = slrt;

remscope(tg)

Remove One Scope

tg = slrt;

remscope(tg,1)

Remove Vector of Two Scopes

tg = slrt;

remscope(tg,[1 2])

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

scope_number — New scope number
unsigned integer

6-262



 SimulinkRealTime.target.remscope

New scope number. This argument is optional. The default value is the next available
integer in the target object property Scopes.

If you enter the scope number for an existing scope object, the result is an error.
Example: 1

scope_number_vector — Vector of new scope numbers
unsigned integer vector

Vector of new scope numbers. If you enter the scope number for an existing scope object,
the result is an error.
Example: [2, 3]

See Also

See Also
“Target Computer Commands” | Real-Time Application Properties | Real-Time
Application | Real-Time File Scope | Real-Time Host Scope | Real-Time Target Scope |
SimulinkRealTime.target.addscope | SimulinkRealTime.target.getscope

Introduced in R2014a

6-263



6 MATLAB API

SimulinkRealTime.target.saveparamset
Save real-time application parameter values

Syntax

saveparamset(target_object, 'filename')

Description

saveparamset(target_object, 'filename') saves the real-time application
parameter values in the file filename. This method saves the file on a local drive of
the target computer (C:\ by default). You can later reload these parameters with the
loadparamset function.

Save real-time application parameter values if you change these parameter values while
the application is running in real time. Saving these values enables you to recreate easily
real-time application parameter values from several application runs.

The functions saveparamset and loadparamset save or load only block parameters.
You cannot use these functions to save or load parameters defined only in the model
workspace.

Examples

Save Parameters for Model

Save xpcosc parameters to a file named 'xpcosc_params.dat'

tg = slrt;

saveparamset(tg, 'xpcosc_param.dat')

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

6-264



 SimulinkRealTime.target.saveparamset

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

filename — Name of a file in the target computer file system
character vector

In single quotation marks, enter the name of the file to receive the saved parameters.
Example: 'xpcosc_params.dat'

Data Types: char

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target.loadparamset

Introduced in R2014a

6-265



6 MATLAB API

SimulinkRealTime.target.setparam

Change value of tunable parameter in real-time application

Syntax

setparam(target_object, parameter_block_name, parameter_name, 

parameter_value)

setparam(target_object, parameter_name, parameter_value)

setparam(target_object, parameter_index, parameter_value)

setparam(target_object, parameter_index_vec, param_value_cell_array)

history_struct = setparam(target_object, ___ )

Description

setparam(target_object, parameter_block_name, parameter_name, 

parameter_value) sets the value of a block parameter to a new value. Specify the block
parameter by block name and parameter name.

setparam(target_object, parameter_name, parameter_value) sets the value
of the MATLAB variable to a new value. Specify the variable by parameter name.

setparam(target_object, parameter_index, parameter_value) sets the value
of the block parameter or MATLAB variable to a new value. Specify the parameter by
parameter index.

setparam(target_object, parameter_index_vec, param_value_cell_array)

sets the value of the target parameter to a new value. Specify the parameter by a vector
of parameter indexes and the new value as a cell array.

history_struct = setparam(target_object, ___ ) sets the value of the target
parameter to a new value as specified by the parameters. This method returns a
structure that stores the parameter specification, previous parameter values, and new
parameter values.

6-266



 SimulinkRealTime.target.setparam

Examples

Set Block Parameter by Parameter and Block Names

Set the value of block parameter 'Amplitude' of block 'Signal Generator' to 5.

tg = slrt;

setparam(tg, 'Signal Generator', 'Amplitude', 5)

Sweep Block Parameter Values

Sweep the value of block parameter 'Amplitude' of block 'Signal Generator' by
steps of 2.

tg = slrt;

for i = 1 : 3

    setparam(tg, 'Signal Generator', 'Amplitude', (i*2))

end

Set MATLAB Variable by Scalar Parameter Name

Set the value of MATLAB variable 'Freq' to 30.

tg = slrt;

setparam(tg, 'Freq', 30)

Set MATLAB Variable by Parameter Structure Field Name

Set the value of MATLAB variable 'oscp.G2' to 10000000.

tg = slrt;

setparam(tg, 'oscp.G2',10000000)

Set Block Parameter by Name and Return History

Set the value of block parameter 'Amplitude' of block 'Signal Generator' to 5.

tg = slrt;

history_struct = setparam(tg, 'Signal Generator', 'Amplitude', 5)

history_struct = 

       Source: {'Signal Generator'  'Amplitude'}

    OldValues: 4

6-267



6 MATLAB API

    NewValues: 5

Set Variable by Parameter Name and Return History

Set the value of MATLAB variable 'Freq' to 30.

tg = slrt;

history_struct = setparam(tg, 'Freq', 30)

history_struct = 

       Source: {'Freq'}

    OldValues: 20

    NewValues: 30

Set Variable by Field Name and Return History

Set the value of MATLAB variable 'oscp.G2' to 10000000.

tg = slrt;

history_struct = setparam(tg, 'oscp.G2',10000000)

history_struct = 

       Source: {'oscp'}

    OldValues: [1x1 struct]

    NewValues: 10000000

Set Block Parameter Value by Parameter Index

Get the signal index of block parameter 'Gain' of block 'Gain1', and then set the
parameter value to 10000000.

tg = slrt;

pid = getparamid(tg, 'Gain1', 'Gain');

setparam(tg, pid, 10000000)

Set MATLAB Variable Value by Parameter Index

Get the signal index of MATLAB variable 'G2', and then set the parameter value to
10000000.

tg = slrt;

6-268



 SimulinkRealTime.target.setparam

pid = getparamid(tg, '', 'G2');

setparam(tg, pid,10000000)

Simultaneously Set Block Parameter Values for Multiple Parameters

Get the signal indexes of block parameters 'Gain' of blocks 'Gain1' and 'Gain2', and
then set the parameter values to 10000000 and 400 respectively.

tg = slrt;

pid1 = getparamid(tg, 'Gain1', 'Gain');

pid2 = getparamid(tg, 'Gain2', 'Gain');

setparam(tg, [pid1, pid2], {10000000, 400})

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

parameter_block_name — Hierarchical name of the originating block
character vector

The empty character vector ('') as a block name marks a MATLAB variable that
provides the value for a block parameter. The MATLAB variable is not associated with a
particular block.
Example: 'Gain1', ''

parameter_name — Name of the parameter
character vector

The parameter can designate either a block parameter or a MATLAB variable that
provides the value for a block parameter. To be accessible via parameter name, the
parameter must be observable.

6-269



6 MATLAB API

Note: Simulink Real-Time does not support parameters of multiword data types.

Example: 'Gain', 'oscp.G1', 'oscp', 'G2'

parameter_index — Index number of the parameter
nonnegative integer

The parameter index can mark either a block parameter or a MATLAB variable that
provides the value for a block parameter. To be accessible via parameter index, the
parameter must be observable.

To access a parameter index, type tg.ShowParameters = 'on' in the Command
Window, and count lines starting with 0.

Note: Parameter access by parameter index will be removed in a future release. Access
parameters by parameter name instead.

Example: 0, 1

parameter_value — New parameter value
number | character vector | complex | structure

New value with data type as required by parameter.
Example: 1

parameter_index_vec — Vector of parameter index numbers
vector

Parameter indexes returned by SimulinkRealTime.target.getparamid

Example: [1,2,3]

param_value_cell_array — New parameter values
cell array

New values with data types as required by parameter. The cell array must contain the
same number of values as the parameter index vector.
Example: {1,2,3}

6-270



 SimulinkRealTime.target.setparam

Output Arguments

history_struct — Structure containing changed parameters, old values, and new values
structure

Structure containing the following fields:

• Source — Reference to parameters being changed, in the same format as the input
argument or arguments. If the input arguments are name character vectors, Source
contains name character vectors. If the input argument is a parameter index or vector
of parameter indexes, Source contains a parameter index or a vector of parameter
indexes.

• OldValues — Values held by parameter or parameters before change.
• NewValues — Values held by parameter or parameters before change.

Example:
Source: {'Signal Generator' 'Amplitude'}

OldValues: 4

NewValues: 5

Data Types: struct

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target.getparam | SimulinkRealTime.target.getparamid

Topics
“Tunable Block Parameters and MATLAB Variables”
“Nonobservable Parameters”

Introduced in R2014a

6-271



6 MATLAB API

SimulinkRealTime.target.start
Start execution of real-time application on target computer

Syntax

start(target_object)

Description

start(target_object) starts execution of the real-time application represented
by the target object. Before using this method, you must create and load the real-time
application on the target computer. If a real-time application is running, this command
has no effect.

At the target computer command line, you can use the corresponding command:

start

Examples

Start Real-Time Application with Target Object

Start the real-time application represented by the target object tg

tg = slrt;

start(tg)

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.

6-272



 SimulinkRealTime.target.start

Example: tg

Data Types: struct

See Also

See Also
“Target Computer Commands” | Real-Time Application | Real-Time Application
Properties | SimulinkRealTime.target.stop

Introduced in R2014a

6-273



6 MATLAB API

SimulinkRealTime.target.stop
Stop execution of real-time application on target computer

Syntax

stop(target_object)

Description

stop(target_object) stops execution of the real-time application represented by
the target object. Before using this method, you must create and load the real-time
application on the target computer. If a real-time application is not running, this
command has no effect.

At the target computer command line, you can use the corresponding command:

stop

Examples

Stop Real-Time Application with Target Object

Stop the real-time application represented by the target object tg

tg = slrt;

stop(tg)

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.

6-274



 SimulinkRealTime.target.stop

Example: tg

Data Types: struct

See Also

See Also
“Target Computer Commands” | Real-Time Application | Real-Time Application
Properties | SimulinkRealTime.target.start

Introduced in R2014a

6-275



6 MATLAB API

SimulinkRealTime.target.unload
Remove real-time application from target computer

Syntax
unload(target_object)

Description
unload(target_object) removes the loaded real-time application from the target
computer. The kernel goes into loader mode and is ready to download new real-time
application from the development computer.

If you are running the real-time application in Stand Alone mode, this command
has no effect. To unload and reload a new standalone real-time application, rebuild
the standalone application with the new model. Restart the target computer with the
updated standalone application.

Examples
Unload Real-Time Application

Unload the real-time application represented by the target object tg.

Unload the real-time application.

tg = slrt;

unload(tg);

Target: TargetPC1

   Connected            = Yes

   Application          = loader

Input Arguments
target_object — Object representing target computer
SimulinkRealTime.target object

6-276



 SimulinkRealTime.target.unload

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

See Also

See Also
Real-Time Application | Real-Time Application Properties |
SimulinkRealTime.target.load

Introduced in R2014a

6-277



6 MATLAB API

SimulinkRealTime.target.viewTargetScreen
Open real-time window on development computer

Syntax

viewTargetScreen(target_object)

Description

viewTargetScreen(target_object) opens a Simulink Real-Time display window for
target_object.

The behavior of this function depends on the value for the environment property
TargetScope:

• TargetScope enabled (graphics display) — The function uploads a single image
of the target computer screen to the display window. The display is not continually
updated because the target computer produces a higher data volume when its
graphics card is in VGA mode.

To request a screen update, right-click in the display window and then select Update
Simulink Real-Time Target Screen.

To save the screen image to a file, right-click in the display window, and then select
Save as image.

• TargetScope disabled (text display) — The function transfers text output once every
second to the development computer and displays it in the window.

To save the text output to a file, right-click in the display window, and then select
Save as text file.

Examples

View Screen for Default Target Computer

Get target object for default computer, open window display with target computer screen

6-278



 SimulinkRealTime.target.viewTargetScreen

tg = slrt;

viewTargetScreen(tg)

View Screen for Target Computer 'TargetPC1'

Get target object for 'TargetPC1', open window display with target computer screen

tg = slrt('TargetPC1');

viewTargetScreen(tg)

Input Arguments

target_object — Object representing target computer
SimulinkRealTime.target object

Object that represents the target computer. Before calling this function, make sure
that you start the target computer with the Simulink Real-Time kernel and apply the
required Ethernet link settings.
Example: tg

Data Types: struct

See Also

See Also
Real-Time Application Properties | Real-Time Application

Introduced in R2014a

6-279



6 MATLAB API

Real-Time File Scope
Record time-domain data on target computer file system

Description

Controls and accesses properties of file scopes.

The scope gets a data package from the kernel and stores the data in a file on the target
computer file system. Depending on the setting of WriteMode, the file size is or is not
continuously updated. You can transfer the data to another computer for examination or
plotting.

The NumSamples parameter works with the autorestart setting.

• Autorestart is on — When the scope triggers, the scope starts collecting data into a
memory buffer. A background task examines the buffer and writes data to the disk
continuously, appending new data to the end of the file. When the scope reaches the
number of samples that you specified, it starts collecting data again, overwriting the
memory buffer. If the background task cannot keep pace with data collection, data can
be lost.

• Autorestart is off — When the scope triggers, the scope starts collecting data into
a memory buffer. It stops when it has collected the number of samples that you
specified. A background task examines the buffer and writes data to the disk
continuously, appending the new data to the end of the file.

The following limitations exist:

• You can have at most eight files open on the target computer at the same time.
• The largest single file that you can create on the target computer is 4 GB.
• A fully qualified folder name can have a maximum of 248 characters, including the

drive letter, colon, and backslash.
• A fully qualified file name can have a maximum of 260 characters: The file part can

have at most 12 characters: eight for the file name, one for the period, and at most
three for the file extension. A file name longer than eight characters is truncated to
six characters followed by '~1'.

• Do not write data to the private folder on your target computer. It is reserved for
Simulink Real-Time internal use.

6-280



 Real-Time File Scope

The following lexical rules exist:

• Function names are case sensitive. Type the entire name.
• Property names are not case sensitive. You do not need to type the entire name, as

long as the characters that you type are unique for the property.

You can invoke some of the scope object properties and functions from the target
computer command line when you have loaded the real-time application.

Create Object

SimulinkRealTime.target.addscope

Properties

Use scope object properties to select signals that you want to acquire, set triggering
modes, and access signal information from the real-time application.

To get the value of a readable scope object property from a scope object:

scope_object = getscope(target_object, scope_number);

value = scope_object.scope_object_property

To get the Decimation of scope 3:

scope_object = getscope(tg, 3);

value = scope_object.Decimation

To set the value of a writable scope property from a scope object:

scope_object = getscope(target_object, scope_number);

scope_object.scope_object_property = new_value

To set the Decimation of scope 3:

scope_object = getscope(tg, 3);

scope_object.Decimation = 10

Not all properties are user-writable. For example, after you create the scope, property
Type is not writable.

6-281



6 MATLAB API

File Scope Properties

AutoRestart — Restart acquisition after acquiring required number of samples
'off' (default) | 'on'

Possible values:

• 'on' — The scope collects data up to NumSamples, and then starts over again,
appending the new data to the end of the signal data file.

• 'off' — The scope collects data up to NumSamples, and then stops.

If the named signal data file exists when you start the real-time application, the software
overwrites the old data with the new signal data.

To use the DynamicFileName property, set AutoRestart to 'on'.

DynamicFileName — Create file names for multiple log files
'off' (default) | 'on'

Enables the file scope to create multiple log files dynamically.

To use the DynamicFileName property, set AutoRestart to 'on'.

Configure Filename to create incrementally numbered file names for the multiple log
files. If you do not configure Filename as required, the software generates an error when
you try to start the scope.

You can enable the creation of up to 99999999 files (<%%%%%%%%>.dat). The length of a
file name, including the specifier, cannot exceed eight characters.

Filename — File name for signal data
'C:\data.dat' (default) | character vector

Provide a name for the file that contains the signal data. For file scopes that you create
through the MATLAB interface, no name is initially assigned to FileName. After you
start the scope, the software assigns a name for the file that is to acquire the signal
data. This name typically consists of the scope object name, ScopeId, and the beginning
letters of the first signal added to the scope.

If you set DynamicFileName and AutoRestart to 'on', configure Filename to
increment dynamically. Use a base file name, an underscore (_), and a < > specifier.
Within the specifier, enter one to eight % symbols. Each symbol % represents a decimal

6-282



 Real-Time File Scope

location in the file name. The specifier can appear anywhere in the file name. For
example, the following value for Filename, C:\work\file_<%%%>.dat creates file
names with the following pattern:
file_001.dat

file_002.dat

file_003.dat

The last file name of this series is file_999.dat. If the block is still logging data
when the last file reaches its maximum size, the function restarts and overwrites the
first file in the series. If you do not retrieve the data from existing files before they are
overwritten, the data is lost.

MaxWriteFileSize — Maximum size of signal data file, in bytes
536870912 (default) | unsigned integer

Provide the maximum size of Filename, in bytes. This value must be a multiple of
WriteSize.

When the size of a log file reaches MaxWriteFileSize, the software increments
the number in the file name and logs data to the new file. The software logs data to
successive files until it fills the file with the highest file number that you specified. If the
software cannot create additional log files, it overwrites the first log file.

WriteMode — File allocation table update policy
'Lazy' (default) | 'Commit'

Specify when a file allocation table (FAT) entry is updated. Both 'Lazy' and 'Commit'
modes write the signal data to the file. With 'Commit' mode, each file write operation
simultaneously updates the FAT entry for the file.

'Commit' mode is slower than 'Lazy' mode. The file system maintains the actual file
size. With 'Lazy' mode, the FAT entry is updated only when the file is closed and not
during each file write operation. If the system stops responding before the file is closed,
the file system does not necessarily know the actual file size. The file contents are intact,
but not easily accessible.

WriteSize — Block size, in bytes, of output data
512 (default) | unsigned integer

Enter the block size, in bytes, of the data chunks. This parameter specifies that a
memory buffer, of length NumSamples, collects data in multiples of WriteSize. Using a
block size that is the same as the disk sector size provides better performance.

6-283



6 MATLAB API

If your system stops responding, you can expect to lose an amount of data equal to the
size of WriteSize.

Common Scope Properties

Application — Name of the real-time application associated with this scope object
character vector

Read-only name of the real-time application associated with this scope object.

Decimation — Samples to acquire
1 (default) | unsigned integer

Scope acquires every Decimationth sample.

NumPrePostSamples — Samples collected before or after a trigger event
0 (default) | integer

Number of samples collected before or after a trigger event. Entering a negative value
collects samples before the trigger event. Entering a positive value collects samples after
the trigger event. If you set TriggerMode to 'FreeRun', this property has no effect on
data acquisition.

NumSamples — Number of contiguous samples captured
unsigned integer

Number of contiguous samples captured during the acquisition of a data package.

The scope writes data samples into a memory buffer of size NumSamples. If the scope
stops before capturing this number of samples, the scope writes zeroes after the collected
data to the end of the buffer. Know what type of data you are collecting, because it is
possible that your data contains zeroes.

ScopeId — Unique numeric index
unsigned integer

Read-only numeric index, unique for each scope.

Signals — Signal indexes to display on scope
unsigned integer vector

List of signal indices from the target object to display on the scope.

6-284



 Real-Time File Scope

Status — State of scope acquisition
'Acquiring' | 'Ready for being Triggered' | 'Interrupted' | 'Finished'

Read-only state value:

• 'Acquiring' — The scope is acquiring data.
• 'Ready for being Triggered' — The scope is waiting for a trigger.
• 'Interrupted' — The scope is not running (interrupted).
• 'Finished' — The scope has finished acquiring data.

TriggerLevel — Signal trigger crossing value
numeric

If TriggerMode is 'Signal', this parameter indicates the value that the signal has to
cross to trigger the scope and start acquiring data. The trigger level can be crossed with
either a rising or falling signal.

TriggerMode — Scope trigger mode
'FreeRun' (default) | 'software' | 'signal' | 'scope'

Trigger mode for a scope:

• 'freerun' — The scope triggers on every sample time.
• 'software' — The scope triggers from the Command Window.
• 'signal' — The scope triggers when a designated signal changes state.
• 'scope' — The scope triggers when a designated scope triggers.

TriggerSample — Trigger sample for scope trigger
0 (default) | -1 | integer

If TriggerMode is 'Scope', then TriggerSample specifies on which sample of the
triggering scope the current scope triggers.

For example, if TriggerSample is 0 (default), the current scope triggers on sample
0 (first sample acquired) of the triggering scope. In this case, the two scopes are
synchronized with each other.

If TriggerSample is 1, the current scope triggers on sample 1 (second sample acquired)
of the triggering scope. In this case, the two scopes have a one-sample offset.

6-285



6 MATLAB API

Setting TriggerSample to -1 means that the current scope triggers at the end of the
acquisition cycle of the triggering scope. In this case, the triggered scope acquires its first
sample one sample after the last sample of the triggering scope.

TriggerScope — Scope for scope trigger
unsigned integer

If TriggerMode is 'Scope', this parameter identifies the scope to use for a trigger.
To trigger a scope when another scope is triggered, set the slave scope property
TriggerScope to the scope index of the master scope.

TriggerSignal — Signal for signal trigger
unsigned integer

If TriggerMode is 'Signal', this parameter identifies the block output signal to use
for triggering the scope. Identify the signal with a signal index from the target object
property Signal.

TriggerSlope — Trigger slope for signal trigger
'Either' (default) | 'Rising' | 'Falling'

If TriggerMode is 'Signal', TriggerSlope indicates the signal behavior that triggers
the scope.

• 'Either' — The signal triggers the scope when it crosses triggerlevel in either
the rising or falling directions.

• 'Rising' — The signal triggers the scope when it crosses triggerlevel in the
rising direction.

• 'Falling' — The signal triggers the scope when it crosses triggerlevel in the
falling direction.

Type — Type of scope
'Host' (default) | 'Target' | 'File'

Read-only property that determines how the scope collects and displays its data:

• 'Host' — The scope collects data on the target computer and displays it on the
development computer.

• 'Target' — The scope collects data on the target computer and displays it on the
target computer monitor.

• 'File' — The scope collects and stores data on the target computer.

6-286



 Real-Time File Scope

Object Functions
SimulinkRealTime.fileScope.addsignal Add signals to file scope represented by

scope object
SimulinkRealTime.fileScope.remsignal Remove signals from file scope represented

by scope object
SimulinkRealTime.fileScope.start Start execution of file scope on target

computer
SimulinkRealTime.fileScope.stop Stop execution of file scope on target

computer
SimulinkRealTime.fileScope.trigger Software-trigger start of data acquisition for

file scope

Examples
Build and Run Real-Time Application with File Scope

Build and download xpcosc and execute the real-time application with a file scope.

Open, build, and download the real-time application.

ex_model = 'xpcosc';

open_system(ex_model);

rtwbuild(ex_model);

tg = SimulinkRealTime.target

Target: TargetPC1

   Connected            = Yes

   Application          = xpcosc

   Mode                 = Real-Time Single-Tasking

   Status               = stopped

   CPUOverload          = none

   ExecTime             = 0.0000

   SessionTime          = 601.8748

   StopTime             = 0.200000

   SampleTime           = 0.000250

   AvgTET               = NaN

   MinTET               = Inf

   MaxTET               = 0.000000

   ViewMode             = 0

   TimeLog              = Vector(0) 

6-287



6 MATLAB API

   StateLog             = Matrix (0 x 2)

   OutputLog            = Matrix (0 x 2)

   TETLog               = Vector(0) 

   MaxLogSamples        = 16666

   NumLogWraps          = 0

   LogMode              = Normal

   Scopes               = No Scopes defined  

   NumSignals           = 7

   ShowSignals          = off

   NumParameters        = 7

   ShowParameters       = off

Add and configure file scope 1.

sc1 = addscope(tg, 'file', 1);

addsignal(sc1, 4);

addsignal(sc1, 5)

ans = 

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 1

   Status               = Interrupted

   Type                 = File

   NumSamples           = 250

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = 4  : Integrator1

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 1

   TriggerSample        = 0

   FileName             = unset

   WriteMode            = Lazy

   WriteSize            = 512

   AutoRestart          = off

   DynamicFileName      = off

   MaxWriteFileSize     = 536870912

   Signals              = 4  : Integrator1

                          5  : Signal Generator

6-288



 Real-Time File Scope

Run the real-time application for 10 seconds.

tg.StopTime = 10;

start(sc1);

start(tg);

pause(10);

stop(tg);

stop(sc1);

Download and display the file scope data.

fsys = SimulinkRealTime.fileSystem(tg);

fh = fopen(fsys, sc1.FileName);

data = fread(fsys, fh);

uint8_data = uint8(data);

plottable_data = ...

     SimulinkRealTime.utils.getFileScopeData(uint8_data);

plot(plottable_data.data)

6-289



6 MATLAB API

Unload the real-time application.

unload(tg)

Target: TargetPC1

   Connected            = Yes

6-290



 Real-Time File Scope

   Application          = loader

See Also

See Also
“Target Computer Commands” | Real-Time Host Scope | Real-Time
Application | Real-Time Application Properties | Real-Time Target Scope |
SimulinkRealTime.target.getscope | SimulinkRealTime.target.remscope

Topics
“Data Logging With a File Scope”
“Simulink Real-Time Scope Usage”
“File Scope Usage”

Introduced in R2014a

6-291



6 MATLAB API

SimulinkRealTime.fileScope.addsignal
Add signals to file scope represented by scope object

Syntax

addsignal(scope_object_vector, signal_index_vector)

Arguments

scope_object_vector Name of a single scope object or the name of a vector of
scope objects.

signal_index_vector For one signal, use a single number. For two or more
signals, enclose numbers in brackets and separate with
commas.

Description

addsignal(scope_object_vector, signal_index_vector) adds signals to a
scope object. Specify the signals by their indices, which you can retrieve using the target
object method SimulinkRealTime.target.getsignalid. If scope_object_vector
has two or more scope objects, the same signals are assigned to each scope.

Before you can add a signal to a scope, you must stop the scope.

At the target computer command line, you can add multiple signals to the scope:

addsignal scope_index = signal_index, signal_index, . . .

Examples

The following examples use model xpcosc.

Add signals Integrator1 and Signal Generator to scope object sc1.

6-292



 SimulinkRealTime.fileScope.addsignal

tg = slrt;

sc1 = addscope(tg,'file',1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

addsignal(sc1,[s0,s1]);

The scope object property Signals is updated to include the added signals. Type sc1 to
display the properties and values for scope sc1.

See Also

See Also
“Target Computer Commands” | Real-Time File Scope | Real-Time Application | Real-
Time Application Properties | SimulinkRealTime.fileScope.remsignal

Topics
“Find Signal and Parameter Indexes”
“File Scope Usage”

Introduced in R2014a

6-293



6 MATLAB API

SimulinkRealTime.fileScope.remsignal
Remove signals from file scope represented by scope object

Syntax
remsignal(scope_object)

remsignal(scope_object, signal_index_vector)

Arguments
scope_object_vector Scope object or vector of scope objects. The target object

methods addscope or getscope create scope objects.
signal_index_vector Index numbers from the scope object property Signals.

This argument is optional. If it is left out, all signals are
removed.

Description
remsignal(scope_object) removes all signals from a scope object.

remsignal(scope_object, signal_index_vector) removes signals from a scope
object. Specify the signals by their indices, which you can retrieve using the target
object method getsignalid. If scope_object is a vector containing two or more scope
objects, the same signals are removed from each scope.

Before you can remove a signal from a scope, you must stop the scope.

At the target computer command line, you can remove multiple signals from the scope:

remsignal scope_index = signal_index, signal_index, . . .

signal_index is optional. If it is left out, all signals are removed.

Examples
The following examples use model xpcosc.

6-294



 SimulinkRealTime.fileScope.remsignal

Remove all signals from the scope represented by the scope object sc1:

tg = slrt;

sc1 = getscope(tg,1);

remsignal(sc1)

Remove signals Integrator1 and Signal Generator from the scope on the target
computer:

tg = slrt;

sc1 = getscope(tg,1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

remsignal(sc1,[s0,s1])

See Also

See Also
“Target Computer Commands” | Real-Time File Scope | Real-Time Application | Real-
Time Application Properties | SimulinkRealTime.fileScope.addsignal

Topics
“Find Signal and Parameter Indexes”
“File Scope Usage”

Introduced in R2014a

6-295



6 MATLAB API

SimulinkRealTime.fileScope.start
Start execution of file scope on target computer

Syntax

start(scope_object)

start(scope_object_vector)

start([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

start(scope_object) starts a scope on the target computer represented by a scope
object on the development computer. Whether data acquisition starts depends on the
trigger settings.

Before using this method, you must create a scope. To create a scope, use the target
object method addscope or add Simulink Real-Time scope blocks to your Simulink
model.

Alternative syntaxes are start(scope_object_vector)and
start([scope_object1, scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

startscope scope_index

startscope all

Examples

Start one scope with the scope object sc1:

6-296



 SimulinkRealTime.fileScope.start

tg = slrt;

sc1 = getscope(tg,1)

start(sc1)

Start two scopes, 1 and 2:

tg = slrt;

somescopes = getscope(tg,[1,2])

start(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

start([sc1,sc2])

Start all scopes:

tg = slrt;

allscopes = getscope(tg)

start(allscopes)

See Also

See Also
“Target Computer Commands” | Real-Time File Scope | Real-Time Application | Real-
Time Application Properties | SimulinkRealTime.fileScope.stop

Topics
“Trace Signals at Target Computer Command Line”
“File Scope Usage”

Introduced in R2014a

6-297



6 MATLAB API

SimulinkRealTime.fileScope.stop
Stop execution of file scope on target computer

Syntax

stop(scope_object)

stop(scope_object_vector)

stop([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

stop(scope_object) stops a scope on the target computer represented by a scope
object on the development computer.

Alternative syntaxes are stop(scope_object_vector) and stop([scope_object1,
scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

stopscope scope_index

stopscope all

Examples

Stop one scope with the scope object sc1:

tg = slrt;

sc1 = getscope(tg,1)

stop(sc1)

6-298



 SimulinkRealTime.fileScope.stop

Stop two scopes, 1 and 2:

tg = slrt;

somescopes = getscope(tg,[1,2])

stop(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

stop([sc1,sc2])

Stop all scopes:

tg = slrt;

allscopes = getscope(tg)

stop(allscopes)

See Also

See Also
“Target Computer Commands” | Real-Time File Scope | Real-Time Application | Real-
Time Application Properties | SimulinkRealTime.fileScope.start

Topics
“Trace Signals at Target Computer Command Line”
“File Scope Usage”

Introduced in R2014a

6-299



6 MATLAB API

SimulinkRealTime.fileScope.trigger
Software-trigger start of data acquisition for file scope

Syntax

trigger(scope_object_vector)

Arguments

scope_object_vector Name of a single scope object, name of a vector of scope
objects, or a list of scope object names in a vector form
[scope_object1, scope_object2].

Description

trigger(scope_object_vector) triggers the scope represented by the scope object to
acquire the number of data points in the scope object property NumSamples.

If the scope object property TriggerMode has a value of 'Software', this function
is the only way to trigger the scope. However, this function can be used on any scope,
regardless of trigger mode setting. For example, if a scope did not trigger because the
triggering criteria were not met, this function can be used to force the scope to trigger.

Examples

Using model xpcosc, configure a file scope to software trigger mode, trigger the scope,
acquire samples, read the file, and plot the data.

tg = slrt;

tg.StopTime = Inf

sc1 = addscope(tg,'file',1);

sc1.FileName = 'data.dat';

addsignal(sc1, 4)

sc1.TriggerMode = 'software';

6-300



 SimulinkRealTime.fileScope.trigger

start(tg)

start(sc1)

trigger(sc1)

pause(0.5)

stop(sc1)

stop(tg)

filesys_object = SimulinkRealTime.fileSystem(tg);

hdl = fopen(filesys_object,'data.dat');

ddata = fread(filesys_object,hdl);

fclose(filesys_object, hdl);

mdata = SimulinkRealTime.utils.getFileScopeData(ddata);

plot(mdata.data(:,2),mdata.data(:,1))

See Also

See Also
“Target Computer Commands” | Real-Time File Scope | Real-Time Application | Real-
Time Application Properties

Topics
“File Scope Usage”

Introduced in R2014a

6-301



6 MATLAB API

Real-Time Host Scope

Display time-domain data on development computer screen

Description

Controls and accesses properties of host scopes.

The kernel acquires a data package and sends it to the scope on the target computer. The
scope waits for an upload command from the development computer, and then uploads
the data. The development computer displays the data by using Simulink Real-Time
Explorer or other MATLAB functions.

The following rules exist:

• Function names are case sensitive. Type the entire name.
• Property names are not case sensitive. You do not need to type the entire name, as

long as the characters that you type are unique for the property.

You can invoke some of the scope object properties and functions from the target
computer command line when you have loaded the real-time application.

Create Object

SimulinkRealTime.target.addscope

Properties

Use scope object properties to select signals that you want to acquire, set triggering
modes, and access signal information from the real-time application.

To get the value of a readable scope object property from a scope object:

scope_object = getscope(target_object, scope_number);

value = scope_object.scope_object_property

6-302



 Real-Time Host Scope

To get the Decimation of scope 3:

scope_object = getscope(tg, 3);

value = scope_object.Decimation

To set the value of a writable scope property from a scope object:

scope_object = getscope(target_object, scope_number);

scope_object.scope_object_property = new_value

To set the Decimation of scope 3:

scope_object = getscope(tg, 3);

scope_object.Decimation = 10

Not all properties are user-writable. For example, after you create the scope, property
Type is not writable.

Host Scope Properties

Data — Signal data from host scope
matrix

Contains read-only output data for a single data package from a scope.

Time — Time data from host scope
vector

Contains read-only time data for a single data package from a scope.

Common Scope Properties

Application — Name of the real-time application associated with this scope object
character vector

Read-only name of the real-time application associated with this scope object.

Decimation — Samples to acquire
1 (default) | unsigned integer

Scope acquires every Decimationth sample.

6-303



6 MATLAB API

NumPrePostSamples — Samples collected before or after a trigger event
0 (default) | integer

Number of samples collected before or after a trigger event. Entering a negative value
collects samples before the trigger event. Entering a positive value collects samples after
the trigger event. If you set TriggerMode to 'FreeRun', this property has no effect on
data acquisition.

NumSamples — Number of contiguous samples captured
unsigned integer

Number of contiguous samples captured during the acquisition of a data package.

The scope writes data samples into a memory buffer of size NumSamples. If the scope
stops before capturing this number of samples, the scope writes zeroes after the collected
data to the end of the buffer. Know what type of data you are collecting, because it is
possible that your data contains zeroes.

ScopeId — Unique numeric index
unsigned integer

Read-only numeric index, unique for each scope.

Signals — Signal indexes to display on scope
unsigned integer vector

List of signal indices from the target object to display on the scope.

Status — State of scope acquisition
'Acquiring' | 'Ready for being Triggered' | 'Interrupted' | 'Finished'

Read-only state value:

• 'Acquiring' — The scope is acquiring data.
• 'Ready for being Triggered' — The scope is waiting for a trigger.
• 'Interrupted' — The scope is not running (interrupted).
• 'Finished' — The scope has finished acquiring data.

TriggerLevel — Signal trigger crossing value
numeric

6-304



 Real-Time Host Scope

If TriggerMode is 'Signal', this parameter indicates the value that the signal has to
cross to trigger the scope and start acquiring data. The trigger level can be crossed with
either a rising or falling signal.

TriggerMode — Scope trigger mode
'FreeRun' (default) | 'software' | 'signal' | 'scope'

Trigger mode for a scope:

• 'freerun' — The scope triggers on every sample time.
• 'software' — The scope triggers from the Command Window.
• 'signal' — The scope triggers when a designated signal changes state.
• 'scope' — The scope triggers when a designated scope triggers.

TriggerSample — Trigger sample for scope trigger
0 (default) | -1 | integer

If TriggerMode is 'Scope', then TriggerSample specifies on which sample of the
triggering scope the current scope triggers.

For example, if TriggerSample is 0 (default), the current scope triggers on sample
0 (first sample acquired) of the triggering scope. In this case, the two scopes are
synchronized with each other.

If TriggerSample is 1, the current scope triggers on sample 1 (second sample acquired)
of the triggering scope. In this case, the two scopes have a one-sample offset.

Setting TriggerSample to -1 means that the current scope triggers at the end of the
acquisition cycle of the triggering scope. In this case, the triggered scope acquires its first
sample one sample after the last sample of the triggering scope.

TriggerScope — Scope for scope trigger
unsigned integer

If TriggerMode is 'Scope', this parameter identifies the scope to use for a trigger.
To trigger a scope when another scope is triggered, set the slave scope property
TriggerScope to the scope index of the master scope.

TriggerSignal — Signal for signal trigger
unsigned integer

6-305



6 MATLAB API

If TriggerMode is 'Signal', this parameter identifies the block output signal to use
for triggering the scope. Identify the signal with a signal index from the target object
property Signal.

TriggerSlope — Trigger slope for signal trigger
'Either' (default) | 'Rising' | 'Falling'

If TriggerMode is 'Signal', TriggerSlope indicates the signal behavior that triggers
the scope.

• 'Either' — The signal triggers the scope when it crosses triggerlevel in either
the rising or falling directions.

• 'Rising' — The signal triggers the scope when it crosses triggerlevel in the
rising direction.

• 'Falling' — The signal triggers the scope when it crosses triggerlevel in the
falling direction.

Type — Type of scope
'Host' (default) | 'Target' | 'File'

Read-only property that determines how the scope collects and displays its data:

• 'Host' — The scope collects data on the target computer and displays it on the
development computer.

• 'Target' — The scope collects data on the target computer and displays it on the
target computer monitor.

• 'File' — The scope collects and stores data on the target computer.

Object Functions
SimulinkRealTime.hostScope.addsignal Add signals to host scope represented by

scope object
SimulinkRealTime.hostScope.remsignal Remove signals from host scope represented

by scope object
SimulinkRealTime.hostScope.start Start execution of host scope on target

computer
SimulinkRealTime.hostScope.stop Stop execution of host scope on target

computer

6-306



 Real-Time Host Scope

SimulinkRealTime.hostScope.trigger Software-trigger start of data acquisition for
host scope

Examples

Build and Run Real-Time Application with Host Scope

Build and download xpcosc and execute the real-time application with a host scope.

Open, build, and download the real-time application.

ex_model = 'xpcosc';

open_system(ex_model);

rtwbuild(ex_model);

tg = SimulinkRealTime.target

Target: TargetPC1

   Connected            = Yes

   Application          = xpcosc

   Mode                 = Real-Time Single-Tasking

   Status               = stopped

   CPUOverload          = none

   ExecTime             = 0.0000

   SessionTime          = 171.7449

   StopTime             = 0.200000

   SampleTime           = 0.000250

   AvgTET               = NaN

   MinTET               = Inf

   MaxTET               = 0.000000

   ViewMode             = 0

   TimeLog              = Vector(0) 

   StateLog             = Matrix (0 x 2)

   OutputLog            = Matrix (0 x 2)

   TETLog               = Vector(0) 

   MaxLogSamples        = 16666

   NumLogWraps          = 0

   LogMode              = Normal

   Scopes               = No Scopes defined  

   NumSignals           = 7

6-307



6 MATLAB API

   ShowSignals          = off

   NumParameters        = 7

   ShowParameters       = off

Add and configure host scope 1.

sc1 = addscope(tg, 'host', 1);

addsignal(sc1, 4);

addsignal(sc1, 5)

ans = 

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 1

   Status               = Interrupted

   Type                 = Host

   NumSamples           = 250

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = 4  : Integrator1

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 1

   TriggerSample        = 0

   StartTime            = -1.000000

   Data                 = Matrix (250 x 2)

   Time                 = Matrix (250 x 1)

   Signals              = 4  : Integrator1

                          5  : Signal Generator

Run the real-time application for 10 seconds.

tg.StopTime = 10;

start(sc1);

start(tg);

pause(10);

stop(tg);

stop(sc1);

Plot the result.

plot(sc1.Time,sc1.Data);

6-308



 Real-Time Host Scope

Unload the real-time application.

unload(tg)

Target: TargetPC1

   Connected            = Yes

6-309



6 MATLAB API

   Application          = loader

See Also

See Also
“Target Computer Commands” | Real-Time Application | Real-Time
Application Properties | SimulinkRealTime.target.getscope |
SimulinkRealTime.target.remscope

Topics
“Signal Tracing With a Host Scope in Freerun Mode”
“Signal Tracing Using Software Triggering”
“Signal Tracing Using Signal Triggering”
“Signal Tracing Using Scope Triggering”
“Pre- and Post-Triggering of a Host Scope”
“Simulink Real-Time Scope Usage”
“Host Scope Usage”

Introduced in R2014a

6-310



 SimulinkRealTime.hostScope.addsignal

SimulinkRealTime.hostScope.addsignal
Add signals to host scope represented by scope object

Syntax

addsignal(scope_object_vector, signal_index_vector)

Arguments

scope_object_vector Name of a single scope object or the name of a vector of
scope objects.

signal_index_vector For one signal, use a single number. For two or more
signals, enclose numbers in brackets and separate with
commas.

Description

addsignal(scope_object_vector, signal_index_vector) adds signals to a
scope object. Specify the signals by their indices, which you can retrieve using the target
object method SimulinkRealTime.target.getsignalid. If scope_object_vector
has two or more scope objects, the same signals are assigned to each scope.

Before you can add a signal to a scope, you must stop the scope.

At the target computer command line, you can add multiple signals to the scope:

addsignal scope_index = signal_index, signal_index, . . .

Examples

The following examples use model xpcosc.

Add signals Integrator1 and Signal Generator to scope object sc1.

6-311



6 MATLAB API

tg = slrt;

sc1 = addscope(tg,'host',1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

addsignal(sc1,[s0,s1]);

The scope object property Signals is updated to include the added signals. Type sc1 to
display the properties and values for scope sc1.

See Also

See Also
“Target Computer Commands” | Real-Time Host Scope | Real-Time Application | Real-
Time Application Properties | SimulinkRealTime.hostScope.remsignal

Topics
“Find Signal and Parameter Indexes”
“Host Scope Usage”

Introduced in R2014a

6-312



 SimulinkRealTime.hostScope.remsignal

SimulinkRealTime.hostScope.remsignal
Remove signals from host scope represented by scope object

Syntax
remsignal(scope_object)

remsignal(scope_object, signal_index_vector)

Arguments
scope_object_vector Scope object or vector of scope objects. The target object

methods addscope or getscope create scope objects.
signal_index_vector Index numbers from the scope object property Signals.

This argument is optional. If it is left out, all signals are
removed.

Description
remsignal(scope_object) removes all signals from a scope object.

remsignal(scope_object, signal_index_vector) removes signals from a scope
object. Specify the signals by their indices, which you can retrieve using the target
object method getsignalid. If scope_object is a vector containing two or more scope
objects, the same signals are removed from each scope.

Before you can remove a signal from a scope, you must stop the scope.

At the target computer command line, you can remove multiple signals from the scope:

remsignal scope_index = signal_index, signal_index, . . .

signal_index is optional. If it is left out, all signals are removed.

Examples
The following examples use model xpcosc.

6-313



6 MATLAB API

Remove all signals from the scope represented by the scope object sc1:

tg = slrt;

sc1 = getscope(tg,1);

remsignal(sc1)

Remove signals Integrator1 and Signal Generator from the scope on the target
computer:

tg = slrt;

sc1 = getscope(tg,1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

remsignal(sc1,[s0,s1])

See Also

See Also
“Target Computer Commands” | Real-Time Host Scope | Real-Time Application | Real-
Time Application Properties | SimulinkRealTime.hostScope.addsignal

Topics
“Find Signal and Parameter Indexes”
“Host Scope Usage”

Introduced in R2014a

6-314



 SimulinkRealTime.hostScope.start

SimulinkRealTime.hostScope.start
Start execution of host scope on target computer

Syntax

start(scope_object)

start(scope_object_vector)

start([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

start(scope_object) starts a scope on the target computer represented by a scope
object on the development computer. Whether data acquisition starts depends on the
trigger settings.

Before using this method, you must create a scope. To create a scope, use the target
object method addscope or add Simulink Real-Time scope blocks to your Simulink
model.

Alternative syntaxes are start(scope_object_vector)and
start([scope_object1, scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

startscope scope_index

startscope all

Examples

Start one scope with the scope object sc1:

6-315



6 MATLAB API

tg = slrt;

sc1 = getscope(tg,1)

start(sc1)

Start two scopes, 1 and 2:

tg = slrt;

somescopes = getscope(tg,[1,2])

start(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

start([sc1,sc2])

Start all scopes:

tg = slrt;

allscopes = getscope(tg)

start(allscopes)

See Also

See Also
“Target Computer Commands” | Real-Time Host Scope | Real-Time Application | Real-
Time Application Properties | SimulinkRealTime.hostScope.stop

Topics
“Trace Signals at Target Computer Command Line”
“Host Scope Usage”

Introduced in R2014a

6-316



 SimulinkRealTime.hostScope.stop

SimulinkRealTime.hostScope.stop
Stop execution of host scope on target computer

Syntax

stop(scope_object)

stop(scope_object_vector)

stop([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

stop(scope_object) stops a scope on the target computer represented by a scope
object on the development computer.

Alternative syntaxes are stop(scope_object_vector) and stop([scope_object1,
scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

stopscope scope_index

stopscope all

Examples

Stop one scope with the scope object sc1:

tg = slrt;

sc1 = getscope(tg,1)

stop(sc1)

6-317



6 MATLAB API

Stop two scopes, 1 and 2:

tg = slrt;

somescopes = getscope(tg,[1,2])

stop(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

stop([sc1,sc2])

Stop all scopes:

tg = slrt;

allscopes = getscope(tg)

stop(allscopes)

See Also

See Also
“Target Computer Commands” | Real-Time Host Scope | Real-Time Application | Real-
Time Application Properties | SimulinkRealTime.hostScope.start

Topics
“Trace Signals at Target Computer Command Line”
“Host Scope Usage”

Introduced in R2014a

6-318



 SimulinkRealTime.hostScope.trigger

SimulinkRealTime.hostScope.trigger
Software-trigger start of data acquisition for host scope

Syntax

trigger(scope_object_vector)

Arguments

scope_object_vector Name of a single scope object, name of a vector of scope
objects, or a list of scope object names in a vector form
[scope_object1, scope_object2].

Description

trigger(scope_object_vector) triggers the scope represented by the scope object to
acquire the number of data points in the scope object property NumSamples.

If the scope object property TriggerMode has a value of 'Software', this function
is the only way to trigger the scope. However, this function can be used on any scope,
regardless of trigger mode setting. For example, if a scope did not trigger because the
triggering criteria were not met, this function can be used to force the scope to trigger.

Examples

Using model xpcosc, set a host scope to software trigger, acquire samples, and plot
the data on the host. Use the scope object properties scope_object.Time and
scope_object.Data.

tg = slrt;

tg.StopTime = Inf;

sc1 = addscope(tg,'host',1);

addsignal(sc1, 4)

sc1.TriggerMode = 'software';

6-319



6 MATLAB API

start(tg)

start(sc1)

trigger(sc1)

pause(0.5)

plot(sc1.Time, sc1.Data)

stop(sc1)

stop(tg)

See Also

See Also
“Target Computer Commands” | Real-Time Host Scope | Real-Time Application | Real-
Time Application Properties

Topics
“Trace Signals at Target Computer Command Line”
“Host Scope Usage”

Introduced in R2014a

6-320



 Real-Time Target Scope

Real-Time Target Scope
Display time-domain data on target computer

Description

Controls and accesses properties of target scopes.

The kernel acquires a data package and the scope displays the data on the target
computer. Depending on the setting of DisplayMode, the data is displayed numerically
or graphically by a redrawing or rolling display.

Sliding display will be removed in a future release. It behaves like rolling display.

The following lexical rules exist:

• Function names are case sensitive. Type the entire name.
• Property names are not case sensitive. You do not need to type the entire name, as

long as the characters that you type are unique for the property.

You can invoke some of the scope object properties and functions from the target
computer command line when you have loaded the real-time application.

Create Object

SimulinkRealTime.target.addscope

Properties

Use scope object properties to select signals that you want to acquire, set triggering
modes, and access signal information from the real-time application.

To get the value of a readable scope object property from a scope object:

scope_object = getscope(target_object, scope_number);

value = scope_object.scope_object_property

To get the Decimation of scope 3:

6-321



6 MATLAB API

scope_object = getscope(tg, 3);

value = scope_object.Decimation

To set the value of a writable scope property from a scope object:

scope_object = getscope(target_object, scope_number);

scope_object.scope_object_property = new_value

To set the Decimation of scope 3:

scope_object = getscope(tg, 3);

scope_object.Decimation = 10

Not all properties are user-writable. For example, after you create the scope, property
Type is not writable.

Target Scope Properties

DisplayMode — How target scope displays signals
'redraw' (default) | 'numerical' | 'rolling'

Indicates how a target scope displays the signals:

• 'redraw' — The scope plots signal values when the scope has acquired numsamples
samples.

• 'numerical' — The scope displays signal values as text.
• 'rolling' — The scope plots signal values at every sample time.

The value 'sliding' will be removed in a future release. It behaves like value
rolling.

Grid — Displays a grid on target screen
'on' (default) | 'off'

When 'on', displays a grid on the target screen.

YLimit — Range of y-axis values
'auto' (default) | numeric

Minimum and maximum y-axis limits. If YLimit is 'auto', the scope calculates the y-
axis limits from the range of data values it is displaying.

6-322



 Real-Time Target Scope

Common Scope Properties

Application — Name of the real-time application associated with this scope object
character vector

Read-only name of the real-time application associated with this scope object.

Decimation — Samples to acquire
1 (default) | unsigned integer

Scope acquires every Decimationth sample.

NumPrePostSamples — Samples collected before or after a trigger event
0 (default) | integer

Number of samples collected before or after a trigger event. Entering a negative value
collects samples before the trigger event. Entering a positive value collects samples after
the trigger event. If you set TriggerMode to 'FreeRun', this property has no effect on
data acquisition.

NumSamples — Number of contiguous samples captured
unsigned integer

Number of contiguous samples captured during the acquisition of a data package.

The scope writes data samples into a memory buffer of size NumSamples. If the scope
stops before capturing this number of samples, the scope writes zeroes after the collected
data to the end of the buffer. Know what type of data you are collecting, because it is
possible that your data contains zeroes.

ScopeId — Unique numeric index
unsigned integer

Read-only numeric index, unique for each scope.

Signals — Signal indexes to display on scope
unsigned integer vector

List of signal indices from the target object to display on the scope.

Status — State of scope acquisition
'Acquiring' | 'Ready for being Triggered' | 'Interrupted' | 'Finished'

Read-only state value:

6-323



6 MATLAB API

• 'Acquiring' — The scope is acquiring data.
• 'Ready for being Triggered' — The scope is waiting for a trigger.
• 'Interrupted' — The scope is not running (interrupted).
• 'Finished' — The scope has finished acquiring data.

TriggerLevel — Signal trigger crossing value
numeric

If TriggerMode is 'Signal', this parameter indicates the value that the signal has to
cross to trigger the scope and start acquiring data. The trigger level can be crossed with
either a rising or falling signal.

TriggerMode — Scope trigger mode
'FreeRun' (default) | 'software' | 'signal' | 'scope'

Trigger mode for a scope:

• 'freerun' — The scope triggers on every sample time.
• 'software' — The scope triggers from the Command Window.
• 'signal' — The scope triggers when a designated signal changes state.
• 'scope' — The scope triggers when a designated scope triggers.

TriggerSample — Trigger sample for scope trigger
0 (default) | -1 | integer

If TriggerMode is 'Scope', then TriggerSample specifies on which sample of the
triggering scope the current scope triggers.

For example, if TriggerSample is 0 (default), the current scope triggers on sample
0 (first sample acquired) of the triggering scope. In this case, the two scopes are
synchronized with each other.

If TriggerSample is 1, the current scope triggers on sample 1 (second sample acquired)
of the triggering scope. In this case, the two scopes have a one-sample offset.

Setting TriggerSample to -1 means that the current scope triggers at the end of the
acquisition cycle of the triggering scope. In this case, the triggered scope acquires its first
sample one sample after the last sample of the triggering scope.

TriggerScope — Scope for scope trigger
unsigned integer

6-324



 Real-Time Target Scope

If TriggerMode is 'Scope', this parameter identifies the scope to use for a trigger.
To trigger a scope when another scope is triggered, set the slave scope property
TriggerScope to the scope index of the master scope.

TriggerSignal — Signal for signal trigger
unsigned integer

If TriggerMode is 'Signal', this parameter identifies the block output signal to use
for triggering the scope. Identify the signal with a signal index from the target object
property Signal.

TriggerSlope — Trigger slope for signal trigger
'Either' (default) | 'Rising' | 'Falling'

If TriggerMode is 'Signal', TriggerSlope indicates the signal behavior that triggers
the scope.

• 'Either' — The signal triggers the scope when it crosses triggerlevel in either
the rising or falling directions.

• 'Rising' — The signal triggers the scope when it crosses triggerlevel in the
rising direction.

• 'Falling' — The signal triggers the scope when it crosses triggerlevel in the
falling direction.

Type — Type of scope
'Host' (default) | 'Target' | 'File'

Read-only property that determines how the scope collects and displays its data:

• 'Host' — The scope collects data on the target computer and displays it on the
development computer.

• 'Target' — The scope collects data on the target computer and displays it on the
target computer monitor.

• 'File' — The scope collects and stores data on the target computer.

Object Functions
SimulinkRealTime.targetScope.addsignal Add signals to target scope represented by

scope object

6-325



6 MATLAB API

SimulinkRealTime.targetScope.remsignal Remove signals from target scope
represented by scope object

SimulinkRealTime.targetScope.start Start execution of target scope on target
computer

SimulinkRealTime.targetScope.stop Stop execution of target scope on target
computer

SimulinkRealTime.targetScope.trigger Software-trigger start of data acquisition for
target scope

Examples

Build and Run Real-Time Application with Target Scope

Build and download xpcosc and execute the real-time application with a target scope.

Open, build, and download the real-time application.

ex_model = 'xpcosc';

open_system(ex_model);

rtwbuild(ex_model);

tg = SimulinkRealTime.target

Target: TargetPC1

   Connected            = Yes

   Application          = xpcosc

   Mode                 = Real-Time Single-Tasking

   Status               = stopped

   CPUOverload          = none

   ExecTime             = 0.0000

   SessionTime          = 158.0022

   StopTime             = 0.200000

   SampleTime           = 0.000250

   AvgTET               = NaN

   MinTET               = Inf

   MaxTET               = 0.000000

   ViewMode             = 0

   TimeLog              = Vector(0) 

   StateLog             = Matrix (0 x 2)

   OutputLog            = Matrix (0 x 2)

   TETLog               = Vector(0) 

6-326



 Real-Time Target Scope

   MaxLogSamples        = 16666

   NumLogWraps          = 0

   LogMode              = Normal

   Scopes               = No Scopes defined  

   NumSignals           = 7

   ShowSignals          = off

   NumParameters        = 7

   ShowParameters       = off

Add and configure target scope 1.

sc1 = addscope(tg, 'target', 1);

addsignal(sc1, 4);

addsignal(sc1, 5)

ans = 

Simulink Real-Time Scope

   Application          = xpcosc

   ScopeId              = 1

   Status               = Interrupted

   Type                 = Target

   NumSamples           = 250

   NumPrePostSamples    = 0

   Decimation           = 1

   TriggerMode          = FreeRun

   TriggerSignal        = 4  : Integrator1

   TriggerLevel         = 0.000000

   TriggerSlope         = Either

   TriggerScope         = 1

   TriggerSample        = 0

   DisplayMode          = Redraw (Graphical)

   YLimit               = Auto

   Grid                 = on

   Signals              = 4  : Integrator1

                          5  : Signal Generator

Run the real-time application for 10 seconds.

tg.StopTime = 10;

start(sc1);

start(tg);

pause(10);

6-327



6 MATLAB API

stop(tg);

stop(sc1);

View the target screen on the development computer.

viewTargetScreen(tg);

Unload the real-time application.

6-328



 Real-Time Target Scope

unload(tg)

Target: TargetPC1

   Connected            = Yes

   Application          = loader

See Also

See Also
“Target Computer Commands” | Real-Time Host Scope | Real-Time
Application | Real-Time Application Properties | Real-Time File Scope |
SimulinkRealTime.target.getscope | SimulinkRealTime.target.remscope

Topics
“Signal Tracing With a Target Scope”
“Simulink Real-Time Scope Usage”
“Target Scope Usage”

Introduced in R2014a

6-329



6 MATLAB API

SimulinkRealTime.targetScope.addsignal
Add signals to target scope represented by scope object

Syntax

addsignal(scope_object_vector, signal_index_vector)

Arguments

scope_object_vector Name of a single scope object or the name of a vector of
scope objects.

signal_index_vector For one signal, use a single number. For two or more
signals, enclose numbers in brackets and separate with
commas.

Description

addsignal(scope_object_vector, signal_index_vector) adds signals to a
scope object. Specify the signals by their indices, which you can retrieve using the target
object method SimulinkRealTime.target.getsignalid. If scope_object_vector
has two or more scope objects, the same signals are assigned to each scope.

Before you can add a signal to a scope, you must stop the scope.

At the target computer command line, you can add multiple signals to the scope:

addsignal scope_index = signal_index, signal_index, . . .

Examples

The following examples use model xpcosc.

Add signals Integrator1 and Signal Generator to scope object sc1.

6-330



 SimulinkRealTime.targetScope.addsignal

tg = slrt;

sc1 = addscope(tg,'target',1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

addsignal(sc1,[s0,s1]);

The scope object property Signals is updated to include the added signals. Type sc1 to
display the properties and values for scope sc1.

See Also

See Also
“Target Computer Commands” | Real-Time Target Scope | Real-Time Application |
Real-Time Application Properties | SimulinkRealTime.targetScope.remsignal

Topics
“Find Signal and Parameter Indexes”
“Target Scope Usage”

Introduced in R2014a

6-331



6 MATLAB API

SimulinkRealTime.targetScope.remsignal
Remove signals from target scope represented by scope object

Syntax
remsignal(scope_object)

remsignal(scope_object, signal_index_vector)

Arguments
scope_object_vector Scope object or vector of scope objects. The target object

methods addscope or getscope create scope objects.
signal_index_vector Index numbers from the scope object property Signals.

This argument is optional. If it is left out, all signals are
removed.

Description
remsignal(scope_object) removes all signals from a scope object.

remsignal(scope_object, signal_index_vector) removes signals from a scope
object. Specify the signals by their indices, which you can retrieve using the target
object method getsignalid. If scope_object is a vector containing two or more scope
objects, the same signals are removed from each scope.

Before you can remove a signal from a scope, you must stop the scope.

At the target computer command line, you can remove multiple signals from the scope:

remsignal scope_index = signal_index, signal_index, . . .

signal_index is optional. If it is left out, all signals are removed.

Examples
The following examples use model xpcosc.

6-332



 SimulinkRealTime.targetScope.remsignal

Remove all signals from the scope represented by the scope object sc1.

tg = slrt;

sc1 = getscope(tg,1);

remsignal(sc1)

Remove signals Integrator1 and Signal Generator from the scope on the target
computer.

tg = slrt;

sc1 = getscope(tg,1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

remsignal(sc1,[s0,s1])

See Also

See Also
“Target Computer Commands” | Real-Time Target Scope | Real-Time Application |
Real-Time Application Properties | SimulinkRealTime.targetScope.addsignal

Topics
“Find Signal and Parameter Indexes”
“Target Scope Usage”

Introduced in R2014a

6-333



6 MATLAB API

SimulinkRealTime.targetScope.start
Start execution of target scope on target computer

Syntax

start(scope_object)

start(scope_object_vector)

start([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

start(scope_object) starts a scope on the target computer represented by a scope
object on the development computer. Whether data acquisition starts depends on the
trigger settings.

Before using this method, you must create a scope. To create a scope, use the target
object method addscope or add Simulink Real-Time scope blocks to your Simulink
model.

Alternative syntaxes are start(scope_object_vector)and
start([scope_object1, scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

startscope scope_index

startscope all

Examples

Start one scope with the scope object sc1.

6-334



 SimulinkRealTime.targetScope.start

tg = slrt;

sc1 = getscope(tg,1)

start(sc1)

Start two scopes, 1 and 2.

tg = slrt;

somescopes = getscope(tg,[1,2])

start(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

start([sc1,sc2])

Start all scopes:

tg = slrt;

allscopes = getscope(tg)

start(allscopes)

See Also

See Also
“Target Computer Commands” | Real-Time Target Scope | Real-Time Application |
Real-Time Application Properties | SimulinkRealTime.targetScope.stop

Topics
“Trace Signals at Target Computer Command Line”
“Target Scope Usage”

Introduced in R2014a

6-335



6 MATLAB API

SimulinkRealTime.targetScope.stop
Stop execution of target scope on target computer

Syntax

stop(scope_object)

stop(scope_object_vector)

stop([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

stop(scope_object) stops a scope on the target computer represented by a scope
object on the development computer.

Alternative syntaxes are stop(scope_object_vector) and stop([scope_object1,
scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

stopscope scope_index

stopscope all

Examples

Stop one scope with the scope object sc1.

tg = slrt;

sc1 = getscope(tg,1)

stop(sc1)

6-336



 SimulinkRealTime.targetScope.stop

Stop two scopes, 1 and 2.

tg = slrt;

somescopes = getscope(tg,[1,2])

stop(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

stop([sc1,sc2])

Stop all scopes:

tg = slrt;

allscopes = getscope(tg)

stop(allscopes)

See Also

See Also
“Target Computer Commands” | Real-Time Target Scope | Real-Time Application |
Real-Time Application Properties | SimulinkRealTime.targetScope.start

Topics
“Trace Signals at Target Computer Command Line”
“Target Scope Usage”

Introduced in R2014a

6-337



6 MATLAB API

SimulinkRealTime.targetScope.trigger
Software-trigger start of data acquisition for target scope

Syntax

trigger(scope_object_vector)

Arguments

scope_object_vector Name of a single scope object, name of a vector of scope
objects, or a list of scope object names in a vector form
[scope_object1, scope_object2].

Description

trigger(scope_object_vector) triggers the scope represented by the scope object to
acquire the number of data points in the scope object property NumSamples.

If the scope object property TriggerMode has a value of 'Software', this function
is the only way to trigger the scope. However, this function can be used on any scope,
regardless of trigger mode setting. For example, if a scope did not trigger because the
triggering criteria were not met, this function can be used to force the scope to trigger.

Examples

Using model xpcosc, set a single target scope to software trigger. Trigger the acquisition
of one set of samples and display the data on the target display.

tg = slrt;

tg.StopTime = Inf;

sc1 = addscope(tg,'target',1);

addsignal(sc1, 4)

sc1.TriggerMode = 'software';

start(tg)

6-338



 SimulinkRealTime.targetScope.trigger

start(sc1)

trigger(sc1)

pause(0.5)

stop(sc1)

stop(tg)

See Also

See Also
“Target Computer Commands” | Real-Time Target Scope | Real-Time Application |
Real-Time Application Properties

Topics
“Find Signal and Parameter Indexes”
“Target Scope Usage”

Introduced in R2014a

6-339




